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1. Introduction

How prevalent is COVID-19? Accurate measures of the fraction of the population that is

currently infected and infectious are crucial for (1) policymakers setting public health and economic

policy, (2) private citizens evaluating the risk of getting infected, and (3) researchers trying to

understand and predict COVID-19 dynamics. However, estimating prevalence is empirically

challenging because the limited testing that is available is typically reserved for individuals meeting

certain criteria, like having symptoms or a known exposure. This limitation induces sampling bias,

and as a result, causes publicly reported case-counts, like those collected by state governments or

the CDC, to underestimate the true number of cases (Stock, 2020; Burger and McLaren, 2017). The

gold-standard solution to sample selection is randomized testing. However, a random sampling

study can quickly become prohibitively costly and organizationally unwieldy to provide accurate,

real-time information as disease dynamics change.2

A key mechanism through which COVID-19 impacts economic activity is through voluntary

social distancing. Therefore, an analysis that allows for time-varying infection rates is crucial to

understand the economic consequences of COVID-19 for changes in demand for local services

(Chetty et al., 2020) and changes in unemployment rates (Yang et al., 2020). Understanding

current active prevalence is also important for policymakers who face a trade-off between lives

and economic livelihoods when considering lockdown policies or other non-pharmaceutical public

health measures. However, a problem they face is that publicly reported prevalence provides a

biased estimate on the virus’s status.

This study attempts to solve these problems by providing an easily applicable model calibrated

on randomized testing data. We develop a method for estimating prevalence in local areas based

on real-time public data by applying Bayes’ Law to a standard SIR (Susceptible, Infected, and

Removed) epidemiological model informed by data from a representative randomized testing project

with roughly 10,000 participants in Utah.

2See the significant changes in prevalence dynamics between late May and early July 2020.

1



Our method measures latent prevalence in real-time and requires only one parameter—which

we estimate from our random testing data—and one publicly available time series: the positive rate

of testing.3 This approach builds on Stock (2020), who shows that under conditional independence

of infections and testing, given symptoms, one can use Bayes’ Law to utilize positive testing rates

for model estimation. We extend his result by showing that one can use this setup to estimate

prevalence, even without estimating an SIR model. Additionally, we outline the conditions on the

testing regime under which our method is applicable, which allows researchers to apply it to future

outbreaks.

We provide estimates for the parameter required to apply this method—the likelihood ratio of

symptoms for infected relative to uninfected persons—based on response data from roughly 10,000

randomly selected individuals in Utah between May and July 2020. This parameter allows us to

re-weight the symptom-based testing data and extrapolate from positive rates in symptomatic people

to the positive rate of the underlying (symptomatic and asymptomatic) population.

We pursue two approaches to validate our method. First, utilizing our randomized testing

and health survey data, we directly test the key conditional independence assumption our method

requires for valid point estimates of prevalence. We show that we cannot reject the null that the

assumption holds in our micro-data (p-value of 0.943). Second, we benchmark our method’s

prevalence estimate against the true rate derived from randomized testing. Our own randomized

viral testing was conducted in Utah between May 4th and July 1st , 2020 and estimates that the

prevalence of COVID-19 in Utah was 0.27% with a 95% confidence interval of [0.12%, 0.42%].

At the same time, our method predicts a median viral prevalence of 0.3% during the same period,

which is well within the 95% confidence interval of the randomized testing point estimate. To

test generalizability of our method beyond Utah, we compare our latent prevalence estimate to

prevalence from randomized testing in Indiana between April 25 and April 29, 2020, by Menachemi

et al. (2020). They estimate a viral prevalence of 1.7% (95% confidence interval from 1.1% to

3Our measurement is related in spirit to sufficient welfare statistics as in Chetty (2009) and Arkolakis et al. (2012), but
differs in its focus (i.e., latent disease prevalence).
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2.54%), compared to a predicted prevalence of 1.55% from our method.

Given our method’s accuracy, we provide estimates for all 50 US states, which imply that

prevalence is 2−3 times higher on average than publicly reported prevalence. Additionally, by

comparing the time series of latent and reported prevalence we show that the ratio of these two

varies over time. This variation could be driven by the intensity of testing or the selection into

testing, both of which affect reported cases but not our estimate of latent prevalence (which is an

important insight for modeling purposes, e.g. Yang et al. (2020)).

We add to the fast-growing economics literature analyzing COVID-19 disease dynamics and its

implications for health and economic outcomes. First, a number of papers have developed different

approaches to estimate SIR type models, such as Atkeson et al. (2020), Korolev (2020), Fernandez-

Villaverde and Jones (2020) and Yang et al. (2020). We show below that our method allows

researchers to directly measure the time path of COVID-19 prevalence, using publicly available

positive testing rates. Second, our work is related to studies of the importance of voluntary social

distancing, whether based on rational expectations as in Eichenbaum et al. (2020a), Eichenbaum

et al. (2020b), Farboodi et al. (2020), or based on information and learning as in Brzezinski et

al. (2020), Allcott et al. (2020), Bursztyn et al. (2020), Simonov et al. (2020), Yang et al. (2020).

Our work complements these efforts by providing correct prevalence measures even for models

with time-varying infection rates or generalized matching functions. A third strand of the literature

utilizes tools from partial identification to provide bounds on prevalence; for example, Aspelund

et al. (2020), Manski and Molinari (2020). We add to this work by providing time-varying point

estimates of latent prevalence and formally test the necessary conditional independence assumption

for field data from Utah.

2. Model

We build on the discussion of inference in Stock (2020) within a canonical SIR model by

Kermack and McKendrick (1927), which is the basis of much epidemiological and economic

research on COVID-19. The total population N can be compartmentalized into susceptible St ,
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infected (and infectious) It and removed, i.e., recovered or deceased Rt . The change in these

compartments is determined by the infection rates βt , the matching function Gt(.), and the inverse

of the length of infectiousness γt . The discrete time version of a generalized SIR model is given by

St + It +Rt = N (1)

∆St+1 = −βt ·Gt (St , It) (2)

∆It+1 = βt ·Gt (St , It)− γt · It (3)

∆Rt+1 = γt · It . (4)

The infection rate βt allows for arbitrary time variation, such as voluntary social distancing

(Farboodi et al., 2020; Fernandez-Villaverde and Jones, 2020; Yang et al., 2020), and the latency

period until the virus can be detected through tests, to change the flow of people from susceptible to

infected. Furthermore, Gt(.) allows for a general, time-varying, and non-linear matching function

that accounts for features such as super-spreading events.4 Finally, variation in the length of

infectiousness 1/γt , captures not just clinical disease progression but also factors such as time until

an infectious person is identified through testing and quarantined, see Berger et al. (2020) and

Yang et al. (2020). It should be noted that while our measurement approach is consistent with this

general SIR model in (1)-(4), we only will use a version of equation (1) for our method. For this

purpose, we divide (1) by N to transform numbers of people into probabilities of being in different

compartments, e.g.,

P(St)+P(It)+P(Rt) = 1, (5)

with P(Xt) =
Xt
N for Xt = {St , It ,Rt}. We are interested in measuring the variable P(It), which is

a stock influenced by inflows (new infections) and outflows (new fatalities and newly recovered

cases) as shown in equation (3).

4Standard random matching implies that Gt(It ,St) =
St ·It

N .
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As Stock (2020) notes, the barrier to identification of the infection rate is that testing and

case-count data is based on symptoms (or other specific risks). Given a person is symptomatic

and gets tested, the positive testing rate mostly reflects the probability of testing positive. The

positive rate is effectively the only source of usable information, as the number of symptomatic and

asymptomatic people is not reported in the data.

We show that if testing is randomly assigned conditional on the presence of symptoms, then we

can express prevalence in terms of the positive test rate. Denote It as the event of being infected at

time t,5 Tt as the event of being tested at t and σt as the event of being symptomatic at t. Then, the

conditional independence assumption is given by

P(It ,Tt |σt) = P(It |σt) ·P(Tt |σt) (6)

Although this condition is unlikely to hold exactly in the data, deviations from conditional in-

dependence condition (6) are likely to be small in magnitude for most US states. COVID-19

testing is still mostly symptom-based (based on guidance from health professionals and public

health officials) and testing of asymptomatic individuals remains rare, even for those with known

exposures (who are often encouraged to quarantine instead). Our randomized testing data together

with our health survey will also allow us to directly test this assumption for a sample period of

about 2 months in Utah. In particular, we use the survey data to calculate P(It ,Tt |σt), P(It |σt), and

P(Tt |σt).6 We report these estimates in panel A of table 2. Importantly, we fail to reject the null that

P(It ,Tt |σt) = P(It |σt) ·P(Tt |σt). To make sure that the rejection of this null hypothesis is not driven

by an underpowered test, we also provide confidence intervals for the odds ratio P(It ,Tt |σt)
P(It |σt)·P(Tt |σt)

,

which are reasonably tight. Additionally, we also show below that our measurement approach is

still valuable if conditional independence assumption (6) fails to hold.

5This is a slight abuse of notation.
6Recall that ”t” in the conditional independence test denotes a two month period.
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Condition (6) implies

P(It |Tt ,σt) = P(It |σt) ·P(Tt |σt)
1

P(Tt |σt)
= P(It |σt), (7)

Equation (7) shows that positive testing rates P(It |Tt ,σt) will correctly measure the probability of

having the virus, conditional on symptoms, given that testing is random among symptomatic people.

Furthermore, the right hand side of (7) can be expressed using Bayes’ Law:

P(It |σt) =
(1−α) ·P(It)

P(σt)
, (8)

where α = P(¬σt |It) is the probability of being asymptomatic, given that a person is infected.

Furthermore, the fraction of symptomatic people is

P(σt) = (1−α) ·P(It)+ s0 · (P(St)+P(Rt)), (9)

where s0 = P(σt |¬It) is the rate of symptoms for not infected persons. Two sets of assumptions

facilitate our analysis. First, following Stock (2020), we assume that people in Rt exhibit the same

rate of symptoms as people in St . Second, we assume that the likelihood ratio P(σt |It)
P(σt |¬It)

= 1−α

s0
is a

constant across time and locations. This is consistent with a model in which patients select into

testing only if their symptoms suggest a subjective likelihood ratio that is greater than 1−α

s0
. Hence

even if symptom rates for non-infected people vary across locations or time (e.g. with the onset

of flu season), we assume that doctors adjust their subjective probabilities accordingly, and only

recommend taking a test if the individual likelihood ratio is greater than 1−α

s0
. This is an important

assumption as it allows us to generalize the likelihood ratio across time and location. We will test

its generalizability in the results section.

Using (5) in (9) we obtain

P(σt) = s0 +(1−α− s0) ·P(It). (10)
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Then we can use (10) in (8) and solve for P(It) to get

P(It) =
P(It |σt)

1−α

s0
(1−P(It |σt))+P(It |σt)

. (11)

Equation (11) is our central measurement tool, henceforth referred to as “hidden-infection-

method.” It states that given an estimate of the likelihood ratio 1−α

s0
and a time series of the fraction

of tests that are positive P(It |Tt ,σt), which proxies for P(It |σt), one can measure the time path of

the fraction of the population that is currently infectious P(It). Furthermore, the validity of the point

estimate of (11) depends on conditional independence (6) as well as the absence of widespread

asymptomatic testing, which we believe is a good approximation for many states.

We add four observations on the robustness of the hidden-infection-method (11). First, note that

it is not necessary to estimate any of the hidden objects βt ,γt ,Gt(·) or the latent number of initially

infected I0. Second, note that misreporting of symptoms only matters to the degree that it impacts the

likelihood ratio 1−α

s0
. If infected and uninfected people are equally likely to over-report symptoms

the ratio 1−α

s0
stays unaffected. Third, even if conditional independence (6), fails, equation (11) can

provide useful bounds on the variable P(It), see Aspelund et al. (2020) and Manski and Molinari

(2020) for similar results. Specifically, suppose the following inequalities holds

P(It |σt)≥ P(It |Tt ,σt)

P(It |σt)≥ P(It |Tt ,¬σt)

(12)

The first inequality in equation (12) reflects selection into testing and is influenced by two sample

selection effects. On the one hand, some people with information beyond symptoms, such as

exposure to COVID-19 positive persons might be more likely to get tested, biasing P(It |Tt ,σt) up

relative to P(It |σt). On the other hand, very health conscious people might get tested even though

they aggressively socially distance and only exhibit mild flu-like symptoms, biasing P(It |Tt ,σt)

down relative to P(It |σt). The first condition in (12) states that the first effect does not dominate the

second effect.
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In contrast, the second inequality states that positive rates for tested asymptomatic people are

lower than the infection probability for symptomatic people in the population. This assumption will

hold, if for example most asymptomatic testing is precautionary testing, for example in preparation

of major surgery. It will even hold for moderate amounts of contact-tracing but will fail if all

tested asymptomatic people had know exposures to COVID-19 and are therefore highly likely to be

infected. If (12) holds, then

P(It |Tt) = P(It |Tt ,σt) ·P(σt |Tt)+P(It |Tt ,¬σt) ·P(¬σt |Tt)≤ P(It |σt) (13)

since P(σt |Tt)+P(¬σt |Tt) = 1. In other words, reported positive rates are lower than infection rates

of symptomatic people in the population. In this case, it can be shown that

P(It)≥
P(It |Tt)

1−α

s0
(1−P(It |Tt))+P(It |Tt)

. (14)

In other words, under condition (12), use of reported positive rates P(It |Tt), will still enable the

hidden-infection-method to provide a valid lower bound on current COVID-19 prevalence in the

population. We emphasize that the bound (14) is valid even without our conditional independence

assumption (6) and without the assumption of no asymptomatic testing.

3. Data

We combine publicly available data with data from the Health and Economic Recovery Outreach

(HERO) project, a large COVID surveillance program conducted in Utah (Samore et al., 2020). The

public data we use reports the fraction of positives in all tests by state from the COVID tracking

project.7 This data contains the daily rates of positive tests in all state-wide COVID-19 tests to

measure P(It |Tt ,σt). Since this daily data is noisy, we use a 7-day moving average.

7Data accessed from covidtracking.com/api
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3.1. Field Experiment

The HERO project was initiated to estimate COVID-19 prevalence in Utah, understand indicators

and risk factors for COVID, and improve decision-making. In the current application, randomized

testing provides estimates of the key parameters for the hidden-infection-method, the baseline

symptom rate s0 and the asymptomatic rate α .8 The associated survey instrument, which collected

information about symptoms, allows us to estimate the latent probability that infected individuals

are asymptomatic and the probability an uninfected individual has symptoms. Randomized testing

also provides an estimate of viral prevalence, which provides an ideal benchmark for the estimate

from our hidden-infection-method.

Between May 4th and July 1st , we contacted 25,438 households in central Utah (Davis, Salt Lake,

Summit and Utah Counties). To recruit a representative sample, we randomly selected households

from a public list of 657,870 addresses (provided by Utah municipalities) using a stratified sampling

approach. Each address was encouraged to fill out a household survey, have each household member

fill out an individual survey, and all members over the age of 12 were encouraged to get a PCR

(viral) and serology (antibody) test. Individuals were compensated with a $10 USD gift card for

completing the survey and being subsequently tested. Households in our first recruitment strategy

(“in-person” recruitment) received a postcard, a letter, and a field team visited their address three

times. The remaining addresses (“letter only”) received a letter but were not contacted by our field

team.

We lowered frictions for getting tested by parking a ‘testing bus’ in the center of the geographi-

cally compact area we selected. These areas consist of two or more adjacent Census tracts (which we

refer to as tract-groups).9 We stratified the tract-groups based on publicly reported case prevalence,

the portion of the population identified as Hispanic, and the population’s median age. Due to

variance in county size across our sample, we used only subsets of these stratifying variables for the

8See Samore et al. (2020) for the estimates of the latent infectious rate estimates from the Utah HERO project.
9For reference, there are 212 Census tracts in Salt Lake County for which we defined 131 Census tract-groups. These
tract-groups consist of roughly 4,000 addresses on average.
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smaller counties, with only the largest, Salt Lake County, using all three. We then over-sampled

some of the strata resulting in 26 tract-groups representing the 15 strata.10

From each selected tract-group, we sampled 30 Census blocks to be visited by field teams.11

We chose seven primary addresses from each block and provided up to seven additional backup

addresses if any of the first seven were vacant or not available after three attempts.12 In total, 8,916

addresses ultimately received a visit from our field team and were included in the in-person sample.

Our second recruitment strategy (letter-only) received a letter with instructions on how to fill

out an online survey and an invitation to get tested. This recruitment strategy allowed us to sample

a wider geographic area. We selected addresses across all the tract-groups in each stratum in

the same proportions as the in-person sample (omitting those tract-groups selected for in-person

sampling). The primary sampling unit in this design is Census block-groups, and we selected at

least 19 addresses within those block-groups.13 In total, we sampled 13,997 addresses for letter-only

contact. We supplemented this with 2,078 addresses which were uncontacted backup blocks in the

in-person tract-groups, for a total of 16,076 letters.

Of the 8,916 addresses our field team approached, 2,975 responded by completing at least one

survey, resulting in an average response rate of 33.4%. In the in-person sample, 1,752 (19.7%)

visited the testing bus and completed a PCR test, and 2,154 (24.2%) completed a serology test. The

sample of letters-only households yielded lower response rates, with only 2,091 (13.0%) households

completing at least one survey and 1,851 (11.5%) being ultimately tested. On average 2.0 people

per household from the in-person sample were tested and 1.8 people from the letter-only sample. In

total, 8,221 people completed a viral test and 6,451 people completed a serology test.14

10We then used this stratification strategy to construct sampling weights to undo this deliberate sample selection and
provide representative moments.

11In certain areas, we selected more than 30 blocks: in Park City, which is low density and defined as one tract-group,
we selected 63 blocks, and, an area in Davis county we selected 45 blocks.

12These backup addresses received letters and are counted as ”letter only” if the field team did not physically visit the
addresses.

13The large majority of stratum had 19 addresses per block-group to achieve the target number of addresses in that
stratum, but due to omitting the tract-group from the in-person sample entirely, this was not always possible. When it
was not, we increased the number of addresses sampled from each block-group. A notable example of this is Park
City, where we sampled up to 519 addresses from a single block-group.

14Test samples were collected by medical professions from the University of Utah Medical Center and analyzed by
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3.2. Health Survey

We gathered extensive participant information through a health survey as part of the HERO

project. The survey was completed by the field team during their visits to the address or completed

online by the individuals in the household (for both in-person and letters-only samples, based on

directions sent in the letters). The survey took approximately 15 minutes to complete by the field

team for the first household member, and less time for any subsequent household members. The

questions focused on the individual’s current and past health, daily activities and social distancing

behaviors, employment, and demographic questions.

This study uses a survey question regarding symptoms experienced by participants. Specifically,

we asked, “Over the last 7 to 10 days, have you experienced any of the following symptoms?

Select all that apply” with multiple-choice answers including “New loss of taste or smell” (hereafter

referred to as anosmia).15 From these, we calculate (1−α) by calculating the sampling-probability

weighted average amount of positive answers for anosmia among those respondents who had positive

COVID-19 serology tests. We then calculated s0 as the sampling-probability weighted average

number of positive answers for anosmia among those respondents who had negative COVID-19

serology tests. We use anosmia for our tabulated results because it is the most discriminating. Our

method also works with different symptoms or different combinations of symptoms. For example,

in columns (2) and (3) of Table 2 we consider someone as experiencing symptoms if they have

anosmia and either 1 or 3 additional symptoms.

3.3. Descriptive Evidence

Roughly two-thirds of Utah’s population resides in the four counties in our sample. Panel A of

Table 1 provides descriptive statistics of these four counties from the US Census and CDC. Salt

ARUP Laboratories, the University’s national reference laboratory. The sampling design, nonresponse corrections,
bounding response rates, information treatments, and response rates by distance to the bus can be found in Mclaren et
al. (2020) and Samore et al. (2020).

15Other options included, Fever, New or worsened cough, New or increased shortness of breath or difficulty breathing,
Chills, Repeated shaking with chills, Muscle pain, Headache, Sore throat, and none of the above. See Mclaren et al.
(2020) for more details on the survey.
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Lake County, containing Salt Lake City, is the largest county in our sample, followed by Utah

County to the south and Davis County to the north. Summit County, which contains the ski resort

destination Park City, is the smallest county sampled but had the earliest cases of COVID in Utah

and the highest reported case count in April when we began organizing this project.

We sampled the three larger counties roughly equally in proportion to their population; Summit

County was over-sampled. Panel B of Table 1 reports the number of households we sampled and

the households and individuals that participated in our sample by county. Our overall response rate

is roughly 15 percent. The response rate in Summit County is lower because many addresses were

vacant vacation homes and many households (in the letter-only sample) do not receive mail at their

physical address. Panel C of Table 1 reports estimates of survey responses regarding characteristics,

mobility, and Covid-19 concern, as well as viral and antibody prevalence for those that were

ultimately tested. The median age of individuals in our sample is similar to the median age in the

census data, albeit systematically older because we exclude individuals younger than 12. Our study

also has an under-representation of individuals who self-identify as Hispanic relative to the census

data, despite over-sampling Census tracts with an above-median proportion of Hispanic residents.

Across the four counties, between 8 and 13 percent of participants indicated they had no concern of

COVID, with the remainder having some concern or substantial concern. The estimates for viral

and antibody prevalence are raw and do not include corrections for sampling design, nonresponse,

or other population corrections (for estimates with these corrections see Samore et al. (2020)). Both

viral and antibody prevalence are higher in Summit County than in the other three counties. This

higher prevalence is likely due to being the county with the first known case. Importantly, the

antibody prevalence rate is substantially smaller than previous estimates from other studies with

sample selection issues that suggest anywhere between 2% and 30% positive rates.16 We use these

empirical estimates to provide external validity to the hidden-infection-method developed in this

study.

16https://www.sciencemag.org/news/2020/04/antibody-surveys-suggesting-vast-undercount-coronavirus-infections-
may-be-unreliable
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4. Results

4.1. Prevalence of COVID in Utah

Panel B of Table 2 reports estimates for (1−α), s0, and the likelihood ratio of these two

variables. This table presents unweighted and sampling-probability weighted estimates. We focus

on anosmia as the key symptom as it is the most informative symptom with a likelihood ratio of

16.35. Anosmia is more informative than the other symptoms because many people who do not

have COVID-19 still experience other symptoms such as fevers and coughs, while people who do

not have COVID-19 are much less likely to have anosmia (0.39%). This evidence is consistent

with the medical evidence in Menni et al. (2020), who show that anosmia is a particularly strong

predictor of COVID-19 infection in patients. Furthermore, Lampos et al. (2020) show that Google

searches for anosmia predict the growth in confirmed COVID-19 cases.

We report estimates for anosmia, and anosmia in combination with other symptoms, such

as fever, nausea, stuffy nose, etc. in the three columns of Table 2. The likelihood ratio for the

combination of anosmia and other variables is smaller than for anosmia alone, as reported in

columns (1)–(3), driven by the fact that the addition of these symptoms increases the noise in

symptom data used to diagnose infection. Note that a smaller likelihood ratio would imply a larger

latent prevalence rate, as shown in (11).

We emphasize that our usage of anosmia does not literally suggest that anosmia is the only

symptom used to screen people into testing. Rather, the likelihood ratio measured using anosmia is

unusually informative about how well a potential virus case can be predicted based on symptoms

and what a plausible threshold of the likelihood ratio threshold for selection into testing is.

Combining our estimates of α and s0, and the publicly reported seven-day average of the positive
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rate17 on July 1st of 11.48%, we obtain

P(It) =
P(It |σt)

1−α

s0
(1−P(It |σt))+P(It |σt)

(15)

=
11.48%

16.35∗ (100%−11.48%)+11.48%

= 0.79%.

Table 3 compares our hidden-infection-method prevalence with reported prevalence for Utah as

of July 1st , 2020, and shows that latent prevalence is 2.62 times higher than in publicly reported

data. As a result, the latent infection risk in the population is higher than suggested by the publicly

reported data.

4.2. Benchmarking the Hidden-Infection-Method

Our hidden-infection-method provides estimates of viral prevalence P(It) that can be compared

to estimates of viral prevalence from randomized PCR testing. Our estimate for viral infection from

our randomized testing is 0.27% (95% confidence interval 0.12% to 0.42%) for the period from May

4th to July 1st . In comparison, we estimate a prevalence of 0.3% from the hidden-infection-method

that combines the likelihood ratio of 16.35% and the 5.0% publicly reported median positivity rate

from our sample period May 4th to July 1st .18 This estimate from the hidden-infection-method is

similar to and within the 95% confidence interval for our estimate from randomized testing. The

similarity in estimates provides external validity to the hidden-infection-method. In comparison,

the median of reported prevalence, calculated as the ratio of confirmed cases minus fatalities and

recoveries relative to the state population, is only 0.09%, which is only a third of the prevalence

estimate from randomized testing and outside of the 95% confidence interval.

As mentioned in section 2, a key assumption for generalizability of our method beyond Utah

17Note that this assumes that daily positive rates provide an estimate of the stock of currently active infections among
the symptomatic population, which in turn assumes that people get tested at a random (idiosyncratic) time after the
first symptoms appear.

18The Utah State COVID-19 dashboard reported a median positivity rate of testing of 5.0%, as reported in daily tracking
by covidtracking.com.
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is that the likelihood ratio 1−α

s0
is constant across locations and time. We therefore compare the

estimates from our hidden-infection-method with another representative prevalence estimate for

the state of Indiana, by Menachemi et al. (2020). For the period from April 25-29, 2020 they

report a viral prevalence (using PCR tests) of 1.7% with a 95% confidence interval from 1.1% to

2.54%. The median reported positive rate for Indiana during that same period is 17.0% (data from

covidtracking.com). Using our likelihood ratio of 16.35, we obtain a latent prevalence estimate of

1.55%, again close to the actual randomized testing estimate and well within the 95% confidence

interval.

4.3. Estimates Across All States

Given the validation of our hidden-infection-method on random testing data, we turn to esti-

mating our model for the rest of the United States. Table 3 shows our main results for P(It) from

equation (11), for all 50 states as of July 1st , 2020. These estimates are reported in the first column

of Table 3. The second column reports the current reported positive testing rate that is used in our

hidden-infection-method to calculate P(It) in the first column. This table also provides an estimate

of reported prevalence from publicly available data on confirmed cases Ot , total fatalities Ft , and

recovered cases Ct ; Ot−Ft−Ct
N . Compared to our method, this reported prevalence estimate suffers

from selection bias and requires tracking confirmed cases until they are recovered or a fatality. Such

tracking is logistically challenging and, therefore, often incomplete.

One of the advantages of the hidden-infection-method is that it relies only on the positive

rate—which is readily available and high quality because it is easily measurable. In contrast, data on

total fatalities, and recovered cases are not always available and are relatively poor quality because

of incomplete tracking. In fact, several states do not report these numbers or report questionable

numbers (e.g., California, Florida, and Massachusetts). We impute recovered cases as the 21 day lag

of new cases minus fatalities for all states.19 Our approach to estimating latent prevalence is even

more valuable for these states because it provides the only evidence on current viral prevalence,

19This calculation provides similar numbers for states that report recoveries and in some cases, seem to be exactly those
numbers.
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short of a randomized testing study.

The last column in Table 3 shows that latent prevalence is, on average, 2.89 times higher than

reported prevalence numbers. This difference can also be seen in figure 1, which is a scatter plot

of latent and reported prevalence for July 1st, 2020. If reported prevalence would truly capture all

prevalence, then the two measures should line up around the provided 45-degree line. Instead, most

data points line up above the 45-degree line, indicating that actual prevalence is substantially higher

than reported prevalence.

Our estimates of the ratio of latent prevalence to reported prevalence are also substantially

smaller than those of other studies that use alternative methods for different contexts. For example,

Li et al. (2020) use Bayesian estimation with Kalman-filtering of daily confirmed case counts

in China to estimate the number of latent infection cases, which is over seven times larger than

reported case counts. Additionally, Aspelund et al. (2020) use partial identification methods to

establish that latent infections were 5 to 10 times larger than reported infections in the early stages

of COVID-19 in Iceland. Other partial identification studies such as Manski and Molinari (2020)

find very large bounds for latent prevalence, such as 14.1%-61.8% for New York on April 24th,

2020. Since the reported prevalence for New York on that date is 0.87%, the implied ratio of latent

to reported prevalence is between 16 and over 71. In comparison, our hidden-infection-method

implies a latent prevalence of 3.04% or a ratio of latent to reported prevalence of 3.5 for New York

on April 24th, 2020.

4.4. Tracking Prevalence

One key advantage of using the hidden-infection-method is that it allows us to track prevalence

in real-time. We highlight four key features of how the hidden-infection-method captures high-

frequency dynamics of disease spread in Figure 2. First, latent prevalence is 2 to 4 times higher than

the reported prevalence (note the different vertical axis scales). Second, the ratio between latent

and reported prevalence changes over time because our method accounts for the changes in sample

selection. Sample selection changes as the set of cases accounted for in the publicly reported case

counts, fatalities, or recovered cases varies over time. Third—and related to the changes in sample
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selection—it is worth highlighting that latent prevalence rate from the hidden-infection-method

and the reported prevalence depend on different data inputs. Our latent prevalence measure relies

on positive testing rates, which account for changes in testing availability. Therefore, changes

in positive testing rates are more likely to reflect disease spread instead of changes in testing

rates. In contrast, reported prevalence is impacted by testing rates, recovery reporting rates, and

fatality reporting rates, all of which introduce their own sample selection biases, which themselves

can change over time. Fourth, our latent prevalence measure generally leads reported prevalence.

For example, in Utah the latent prevalence peaks on June 25th almost a month before reported

prevalence on July 24th. The lag in reported prevalence is most likely driven by reporting delays or

imputations in fatalities and recoveries.

An important limitation that any user of our hidden-infection-method (11) should keep in mind

is that it will yield poor approximations if testing is extremely rationed such that only cases with

information on likely exposure to COVID-19 beyond symptoms are tested (e.g., contact tracing).

For example, several states exhibited values of P(It |Tt ,σt) = 1 for several weeks after the first

confirmed case. This value was mainly driven by the fact that the only tests being conducted were

on highly symptomatic people, which at the same time had known exposure to COVID-19, e.g.,

due to travel. However, if the rationing of tests is more like a lottery conditional on symptoms, our

assumptions will hold, as we showed in our field data from Utah. Going forward, with increased

testing capabilities and more widespread asymptomatic testing, our method can still be useful in

providing lower bounds on COVID-19 prevalence, as shown in equation (14).

5. Conclusion

This paper provides a method to measure COVID-19 prevalence, correcting for sample selection

in symptom-based testing data, and incomplete tracking of recovered cases and fatalities. We show

that our statistic measures the latent prevalence of COVID-19 correctly for any generalized SIR

model with time-varying infection and removal rates as well as general time-varying matching

functions. Importantly, we provide supporting evidence that the required conditional independence
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assumption holds in our data and that our method is able to correctly predict prevalence as measured

by representative randomized testing studies. We calculate latent prevalence for all 50 US states,

showing that latent prevalence is likely 2-3 times higher than reported, and that sample selection of

prevalence is time-varying.

The methods developed here link economic responses of individuals through voluntary social

distancing, publicly available positivity rates, and latent prevalence. Our methods are not only

timely for policymakers during this pandemic, but also can be applied to future outbreaks where

sample selection and behavioral responses can provide biased and time-delayed estimates.
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Figure 1: Latent prevalence is calculated using equation (11). Reported prevalence is calculated
as Ot−Ft−Ct

N , where Ot are confirmed cases, Ft are total fatalities and Ct are recovered cases. States
with ˆ and red text are displayed lower on the Y-axis then their true values for convenience. Data is
from the COVID tracking project.
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Figure 2: Time path of latent and reported prevalence in Utah. Latent prevalence is defined as
fraction of currently infected state population. Reported prevalence is calculated as Ot−Ft−Ct

N , where
Ot are confirmed cases, Ft are total fatalities and Ct are recovered cases. Data is from the COVID
tracking project, which takes daily snapshots of the Utah state COVID dashboard.

21



Table 1: Sample Characteristics

Notes: This table provides descriptive statistics from the US Census and our
survey that provides an overview of our sample.

Salt Lake Utah Davis Summit

Panel A: Aggregate Data from Census and CDC

Population 1,120,805 590,440 340,621 40,511

Household Population 3.0 3.6 3.2 2.7

Median Age 34.7 27.2 32.5 39.9

% Hispanic 18.1 11.4 9.1 6.0

Reported Prevalence (5/7/2020) 268 206 91 913

Reported Deaths (5/7/2020) 39 11 2 0

Panel B: Sample Characteristics

Households Sampled 12,138 5,202 4,023 4,075

Households In Sample 2,673 1,130 1,029 280

Households with Antibody Test 2,068 890 816 217

Households with Viral Test 1,589 715 706 144

Individuals In Sample 5,500 2,684 2,303 480

Individuals with Antibody Test 4,060 2,060 1,750 351

Individuals with Viral Test 3,129 1,603 1,487 232

Panel C: Individual Survey and Testing Characteristics

Median Age 42.2 40.2 43.4 51.5

% Hispanic 8.97 8.85 3.46 5.70

% Female 52.5 52.9 51.7 54.6

% Very Concerned 9.89 12.5 8.26 9.62

Viral Prevalence 0.286 0.187 0.202 0.851

Antibody Prevalence 0.98 1.26 0.91 2.81
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Table 2: Key parameters from Randomized Testing

Panel A displays estimates of P(It ,Tt |σt),P(It |σt),P(Tt |σt) for different symptoms and reports the
t-Statistic for a test for the null hypothesis of conditional independence as in (6): P(It ,Tt |σt) =
P(It |σt) ·P(Tt |σt). This t-statistic is calculated as a test of nonlinear combinations of estimators from
a seemingly unrelated regression of infection, tested, and their union on an indicator for symptomatic
individuals. We also report the odds ratio and the confidence interval in square brackets below.
Column (1) reports estimates using the loss of smell or taste (anosmia) as a single symptom. In
Columns (2) and (3), we consider someone to be symptomatic if they had anosmia and at least one
more or three more symptoms, respectively, from the list: stuffy nose, diarrhea, abdominal pain,
nausea, and fever. Panel B displays estimates of fraction of infected persons who display symptoms
(1−α), listed on top and fraction of uninfected persons who display symptoms s0. Point estimates
are presented with estimated standard errors below in parentheses. Weighted estimates use sampling
weights. Data are from representative state-wide testing in Utah from May to July 2020.

Symptoms
Anosmia + Anosmia +

Anosmia at least 1 symptom at least 3 symptoms
(1) (2) (3)

A: Test of Conditional Independence

P(It ,Tt |σt) 2.30% 2.21% 3.75%
P(It |σt)P(Tt |σt) 2.25% 2.38% 3.23%

t-Statistic 0.0893 -0.2094 0.5232

P(It ,Tt |σt)
P(It |σt)P(Tt |σt)

1.0225 0.9286 1.1613
[0.518, 1.526] [0.304, 1.554 ] [0.482, 1.841]

B: Parameter estimates
Unweighted

1−α 5.43 3.26 1.09
(2.38) (1.86) (1.09)

s0 0.39 0.48 0.20
(0.07) (0.08) (0.05)

Likelihood Ratio 13.85 6.82 5.54
(6.50) (4.02) (5.68)

Weighted
1−α 5.68 2.75 0.75

(2.45) (1.73) (0.91)

s0 0.35 0.50 0.23
(0.07) (0.08) (0.05)

Likelihood Ratio 16.35 5.53 3.29
(8.89) (3.78) (3.40)
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Table 3: Latent vs Reported Prevalence

This table presents state level estimates of our model parameters. Positive rate is
fraction of tests reported that are positive for COVID-19 from the COVID tracking
project. P(It) is latent prevalence from equation (11). Cases-deaths, is calculated as
number of confirmed cases minus fatalities as fraction of state population. Rep.Prev. is
baseline reported prevalence, calculated as number of confirmed cases minus fatalities
and recoveries as fraction of state population. Ratio is the ratio of estimated latent
prevalence to baseline reported prevalence. Estimates are calibrated on July 1st , 2020.
State P(It) Positive rate Cases - deaths Rep. Prev. Ratio

(1) (2) (3) (4) (5)

A: Utah

UT 0.79% 11.48% 0.69% 0.30% 2.62

B: All other states

AK 0.06% 1.04% 0.13% 0.05% 1.22
AL 1.06% 14.95% 0.77% 0.35% 3.07
AR 0.65% 9.67% 0.69% 0.36% 1.83
AZ 2.35% 28.22% 1.12% 0.74% 3.19
CA 0.52% 7.92% 0.58% 0.25% 2.09
CO 0.27% 4.23% 0.53% 0.07% 3.60
CT 0.05% 0.89% 1.19% 0.06% 0.88
DE 0.32% 4.97% 1.12% 0.15% 2.15
FL 1.35% 18.24% 0.71% 0.42% 3.23
GA 1.16% 16.14% 0.76% 0.28% 4.13
HI 0.07% 1.20% 0.06% 0.02% 4.45
IA 0.51% 7.80% 0.90% 0.22% 2.37
ID 1.00% 14.18% 0.33% 0.16% 6.30
IL 0.19% 3.07% 1.09% 0.11% 1.68
IN 0.34% 5.33% 0.64% 0.11% 3.04
KS 0.80% 11.63% 0.51% 0.14% 5.56
KY 0.27% 4.29% 0.34% 0.09% 3.11
LA 0.62% 9.27% 1.23% 0.35% 1.79
MA 0.18% 2.82% 1.45% 0.07% 2.47
MD 0.36% 5.56% 1.06% 0.14% 2.58
ME 0.14% 2.27% 0.24% 0.05% 2.90
MI 0.16% 2.48% 0.65% 0.06% 2.64
MN 0.24% 3.81% 0.62% 0.11% 2.11
MO 0.44% 6.80% 0.34% 0.11% 4.07
MS 1.06% 14.85% 0.90% 0.32% 3.35
MT 0.10% 1.61% 0.09% 0.04% 2.39
NC 0.59% 8.85% 0.61% 0.27% 2.21
ND 0.22% 3.44% 0.46% 0.09% 2.46
NE 0.41% 6.25% 0.97% 0.17% 2.41
NH 0.15% 2.38% 0.39% 0.05% 3.13
NJ 0.10% 1.58% 1.76% 0.07% 1.33
NM 0.23% 3.67% 0.56% 0.15% 1.60
NV 1.29% 17.57% 0.59% 0.28% 4.52
NY 0.07% 1.21% 1.90% 0.07% 1.04
OH 0.37% 5.73% 0.43% 0.11% 3.28
OK 0.43% 6.63% 0.35% 0.17% 2.58
OR 0.40% 6.15% 0.20% 0.09% 4.43
PA 0.34% 5.34% 0.63% 0.08% 4.51
RI 0.10% 1.68% 1.52% 0.11% 0.98
SC 1.14% 15.85% 0.71% 0.43% 2.68
SD 0.51% 7.75% 0.75% 0.14% 3.78
TN 0.70% 10.28% 0.65% 0.25% 2.78
TX 1.28% 17.53% 0.56% 0.30% 4.28
VA 0.35% 5.49% 0.71% 0.13% 2.77
VT 0.04% 0.71% 0.18% 0.02% 2.40
WA 0.39% 6.06% 0.46% 0.14% 2.80
WI 0.41% 6.24% 0.54% 0.14% 2.91
WV 0.13% 2.01% 0.16% 0.04% 2.99
WY 0.34% 5.27% 0.26% 0.09% 3.60

AVERAGE 0.50% 7.25% 0.68% 0.17% 2.89
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