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Abstract. Typical censoring models have mass-points at the upper, lower, or both
tails of an otherwise continuous outcome distribution. In contrast, we consider a
censoring model with a mass-point in the interior of the outcome distribution. We
refer to this mass point as “bunching” and use it to estimate model parameters. For
example, economic theory suggests that for increasing marginal income tax rates,
many taxpayers will report income exactly at the threshold where the tax rate
increases. This translates into a censoring model with bunching at the threshold.
The size of this mass point of taxpayers can be used to estimate an elasticity param-
eter, which summarizes taxpayers responses to taxes. This article introduces the
command bunching, which implements new non-parametric and semi-parametric
identification methods for estimating elasticities developed by Bertanha, McCal-
lum, and Seegert (2021). These methods rely on weaker assumptions than what
are currently made in the literature and result in meaningfully different estimates
of the elasticity.

Keywords: st0001, bunching, bunchbounds, bunchtobit, bunchfilter, partial iden-
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1 Introduction

Censoring models apply to distributions of an outcome variable that are continuous
except for a mass-point at the upper, lower, or both tails of the distribution. This
paper considers models where the mass-point occurs in the interior of the outcome
distribution. We refer to this class of models as “mid-censoring models.” Although we
use the adjective “mid-censoring”, the mass point may be at any point in the interior
of the support of the distribution of outcomes.

Previously developed methods use such a mass point, often called “bunching”, to
estimate model parameters. For example, economic theory suggests that for increasing
marginal income tax rates, many taxpayers will report income exactly at the threshold
where the tax rate increases. This translates to a mid-censoring model with a mass-
point in the interior of the distribution of reported income. The size of this mass point
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2 Bunching using Stata

can be used to identify an important parameter of the censoring model, which is known
to economists as an elasticity parameter. In this context, the elasticity parameter de-
scribes the percent change in reported income in response to a percentage point change
in marginal income tax rate. More specifically, an elasticity of 0.5 means that taxpayers
reduce their reported income (labor supply) by 0.5 percent for each 1 percentage point
increase in marginal income tax rates. Section 3.1 provides simulated data and a nu-
merical example interpreting this elasticity in more detail. In the rest of this paper, we
use “bunching” to refer to a mass point in the interior of an outcome distribution, and
“bunching methods” or “bunching estimator” to refer to the statistical methods that
recover elasticity parameters from data that exhibit bunching.

Using bunching to estimate elasticities began with Saez (2010), Chetty et al. (2011),
and Kleven and Waseem (2013). Following these influential papers, bunching methods
became a popular way to estimate elasticities in a variety of settings ranging from
electricity demand (Ito 2014), real estate taxes (Kopczuk and Munroe 2015), labor
regulations (Garicano et al. 2016), and prescription drug insurance (Einav et al. 2017)
to marathon finishing times (Allen et al. 2017), attribute-based regulations (Ito and
Sallee 2018), education (Dee et al. 2019; Caetano et al. 2020a), minimum wage (Jales
2018; Cengiz et al. 2019), and air-pollution data manipulation (Ghanem et al. 2019),
among others. Differences in mass point sizes across groups has been exploited as
the first stage in a two-stage approach to control for endogeneity (Chetty et al. 2013;
Caetano 2015; Grossman and Khalil 2020). Bunching has also been used for causal
identification in Khalil and Yildiz (2020), Caetano and Maheshri (2018), Caetano et al.
(2019), Caetano et al. (2020b), and Jales and Yu (2017) connects bunching to regression
discontinuity (RD). Lastly, Kleven (2016) conducts a detailed review of the bunching
literature.

This paper introduces a new Stata command, bunching, which utilizes assumptions
that are weaker than current bunching methods. The command bunching is a wrap-
per function for three other commands. The first of those commands is bunchbounds,
which estimates upper and lower bounds on the bunching elasticity using a partial-
identification approach. The second is bunchtobit, which uses a semi-parametric
method with covariates for point identification. The third is bunchfilter, which fil-
ters friction errors from the dependent variable before applying either bunchbounds or
bunchtobit.

The statistical foundations for these commands are developed by Bertanha, McCal-
lum, and Seegert (2021). That paper introduces multiple methods to recover elasticities
from bunching. Each method relies on different assumptions to achieve identification of
the elasticity. Since these are assumptions about an unobserved distribution, it is not
possible to determine which assumption is correct. However, it is possible to check if
estimates relying on different assumptions are robust across assumptions. In practice,
we recommend that researchers use the bunching package to employ different estima-
tion methods and check that elasticity estimates they recover are stable across those
methods.
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2 Bunching estimators

The application of bunching methods utilized by Bertanha, McCallum, and Seegert
(2021) and this paper derives from bunching behavior caused by progressive marginal
income taxes, as in Saez (2010). Formally, agents maximize an iso-elastic quasi-linear
utility function of total consumption (or disposable income) and labor, which results in
a data generating process (DGP) for optimal reported taxable income as follows

yi =


εs0 + n∗

i , if n∗
i < n (k, ε, s0)

k, if n (k, ε, s0) ≤ n∗
i ≤ n (k, ε, s1)

εs1 + n∗
i , if n∗

i > n (k, ε, s1) .

(1)

in which yi is the log of reported income, n∗
i is the log of unobserved heterogeneity of

agent i, ε is the elasticity parameter of interest, the log of the slope of the piecewise-
linear constraint changes from s0 to s1 at the log of the kink point k, and s1 < s0.
All logs in this paper are natural logs. The restriction s1 < s0 guarantees concavity
of the budget set, which is fundamental for the solution in Equation 1. In the original
tax application, sj = log(1 − tj), j ∈ {0, 1}, in which tj is the marginal tax rate and
t0 < t1. The expressions for the thresholds that determine the three cases in Equation
1 are n (k, ε, s0) = k − εs0 and n (k, ε, s1) = k − εs1.

We use utility maximizing agents and income-taxes to motivate Equation 1 and for
exposition of the command throughout the rest of this paper. Nevertheless, the methods
developed by Bertanha, McCallum, and Seegert (2021), as well as the bunching package,
apply to any data set generated by Equation 1. We emphasize that any data must be
transformed into units that satisfy Equation 1. In the income-tax example, this is
accomplished by taking logs of the outcome variable, kink, and slopes.

Our methods are applicable to non-tax data. For example, Bitler et al. (2021)
study the Supplemental Nutrition Assistance Program (SNAP), in which low-income
individuals receive benefits for food purchases as a function of labor income, yi. The
benefit is a constant amount for labor income less than a known value, k, but decreases
linearly after that. This reduction in benefits creates a piece-wise linear budget set over
total consumption and labor income with a kink. At yi = k, the log of the slope changes
from s0 to s1 with s1 < s0 (see Bitler et al. 2021, Figure 1). In this case, bunching
methods identify the elasticity of labor supply, ε, with respect to the benefit reduction
rate.

Another non-income-tax application is Ito (2014), who studies consumption of elec-
tricity in Southern California. Electricity price per kilowatt-hour (kWh) changes as a
function of quantity of consumption in kWh (see Figure 3 in his paper). This piece-wise
linear pricing scheme creates a budget set over disposable income and electricity con-
sumption with kinks, and bunching methods identify the demand elasticity with respect
to electricity price.

Piece-wise linear constraints frequently exhibit several kinks at different locations.
bunching can be applied to each kink separately as long as the constraint does not
have a discontinuous jump —often called a “notch” —preceding the kink under study.
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Appendix B of Bertanha et al. (2021) provides a general solution to a model with
multiple kinks and notches and Section “3 Identification” of Bertanha et al. (2021)
discusses inference for multiple kinks.

Our estimation methods rely on Equation 1, which maps the continuously distributed
unobserved n∗

i into a mixed continuous-discrete observed distribution for yi for given
values of (s0, s1, k, ε). For higher values of n

∗
i , higher values of yi will be observed except

when n∗
i falls inside the bunching interval, that is, [n (k, ε, s0) , n (k, ε, s1)], in which case

yi remains constant and equal to k. Therefore, (1) leads to bunching in the distribution
of yi at the kink point k. In other words, the distribution of yi has a mass point at k,
P(yi = k) > 0, but is continuous otherwise. The mass of the point at k depends on the
size of the bunching interval according to

B ≡ P (yi = k) = P (n (k, ε, s0) ≤ n∗
i ≤ n (k, ε, s1)) (2)

= Fn∗ (n (k, ε, s1))− Fn∗ (n (k, ε, s0)) ,

in which Fn∗ is the cumulative distribution function (CDF) of the unobserved n∗.

The data and model formally consist of five elements: (i) the CDF of the outcome
Fy, (ii) the kink point k, (iii) the slopes of the budget constraint on the left, s0, and
right, s1, of the kink point; (iv) the CDF of unobserved heterogeneity Fn∗ , and (v)
the elasticity ε. Equation 1 maps elements (ii)–(v) into the observed CDF, Fy. The
researcher observes elements (i)–(iii), but not the last two elements, Fn∗ and ε.

Original bunching estimators recover ε in two steps (Saez 2010; Chetty et al. 2011).
First, they assume a specific function Fn∗ over the bunching interval. Second, they invert
Equation 2 to recover ε using their assumption about Fn∗ . The methods developed
by Bertanha, McCallum, and Seegert (2021) that are implemented by the bunching

command are quite different than these original approaches.

bunching implements two novel identification strategies for the elasticity using a
mass point at a kink.

The first strategy partially identifies the elasticity by assuming Lipschitz continuity
and is implemented by bunchbounds. In other words, it assumes that the probability
density function (PDF) of the unobserved heterogeneity has bounded slope magnitude.
How this assumption recovers the elasticity is as follows. The observed bunching mass
equals the area under the the heterogeneity PDF inside an interval. The size of this
bunching interval is a function of the unknown elasticity parameter. The highest and
lowest values for possible PDFs inside the bunching interval are set by the Lipschitz
bound on the slope magnitude of the PDFs. With a fixed bunching mass, these PDF
bounds determine the maximum and minimum widths of the bunching interval and
imply lower and upper bounds for the elasticity. bunchbounds has two particularly
valuable features. First, when bunching is observed the elasticity lower bound must be
positive. Second, the bunching estimator based on the trapezoidal approximation (Saez
2010) is always within the bounds (partially identified set of elasticities).

The second strategy rewrites Equation 1 as a mid-censored regression model and is
implemented by bunchtobit. The method assumes that the unobserved heterogeneity
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conditional on covariates follows a normal distribution, but we prove that conditional
normality is not required for consistency of the elasticity when the unconditional dis-
tribution of income is correctly specified. This approach effectively assumes that the
unconditional distribution of heterogeneity belongs to a semi-parametric family of nor-
mal mixtures. Conditional normality implies a Tobit model that has a globally concave
log likelihood that is easy to maximize. bunchtobit also truncates the sample using a
sequence of smaller windows around the kink point. Consistency of the elasticity using
these smaller windows requires weaker assumptions on the distribution of heterogeneity
because the model tends to fit the unconditional distribution of income better as the
window size decreases. To the best of our knowledge, this is the first bunching estima-
tion strategy that utilizes covariates and semi-parametric assumptions to recover the
elasticity. Covariates can control for a substantial amount of individual heterogeneity
and bunchtobit only places assumptions on the remaining portion of heterogeneity that
is unobserved. In general, researchers should prefer methods that control for observable
heterogeneity using covariates over methods that omit covariates and instead restrict
both observed and unobserved heterogeneity.

Many datasets have friction errors which imply that the bunching mass is dispersed
in a small interval near, instead of exactly at, the kink. When friction errors are present,
they must first be filtered out before a bunching estimation method can be applied. The
procedure implemented by bunchfilter is a practical way of removing friction errors
and works well when 1) the researcher has an accurate prior on the support of the
friction error distribution, 2) the friction error affects non-bunching individuals more
than it affects bunching individuals, or 3) the friction error has a small variance. A
more general filtering method requires deconvolution theory, which is an active area of
research.

2.1 The bunchbounds command

bunchbounds uses bunching to partially identify the elasticity of a response variable with
respect to changes in the slope of the budget set. The syntax, options, and description
of this command are as follows:

Syntax for bunchbounds

bunchbounds depvar
[
if

] [
in

] [
weight

]
, kink(#) s0(#) s1(#) m(#)

[
nopic

savingbounds(filename[,replace])
]

depvar must be one dependent variable (the response in logs in many applications).

kink(#) is the location of the kink point and must be a real number in the same units
as the response variable.

s0(#) is a real number. In many applications, it is the log of the slope before the kink
point.
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s1(#) must be a real number that is strictly less than s0(#). In many applications,
it is the log of the slope after the kink point.

m(#) is the maximum magnitude of the heterogeneity PDF slope and must be a strictly
positive real number.

Entries for depvar , kink(#), s0(#), s1(#), and m(#) are required, whereas options
inside the square brackets are not required.

Options for bunchbounds

if and in restrict the working sample, like many other Stata commands.

weight follows Stata’s weight syntax and only allows frequency weights, fweight.

nopic suppresses displaying graphs. The default is to display graphs.

savingbounds(filename[,replace]) saves filename.dta with coordinates of the partially-
identified set as a function of the slope magnitude of the heterogeneity distribution.
Use replace if filename.dta already exists.

Description for bunchbounds

The user enters the name of the response variable, the location of the kink point, the
slopes before and after the kink point, and the maximum slope magnitude of the het-
erogeneity PDF. Before applying the command, all of these entries must be transformed
into units that satisfy the DGP from Equation 1. For example, in the tax setting of Saez
(2010), dollars of taxable income and the dollar value of the kink point are transformed
by taking logs, and the slopes are the log of one minus the respective marginal tax.

bunchbounds computes the maximum and minimum values of the elasticity that
are consistent with the slope restriction on the PDF specified in m(#), the observed
distribution of the response variable, and values of the PDF of the response variable
evaluated at the left and right limits approaching the kink. These limits are computed
non-parametrically using the method of Cattaneo et al. (2020) as implemented by their
Stata package lpdensity, discussed by Cattaneo et al. (2021). Thus, the user needs to
install lpdensity before using bunchbounds.

It is important to emphasize that the true value of the slope magnitude is unknow-
able but bunchbounds provides four sample values as suggestions for the user. The first
two sample values are estimated using the continuous part of the distribution. Specif-
ically, minimum and maximum slope magnitude sample values are constructed from a
histogram of the dependent variable that excludes the kink point and uses a bin width
that is half of the default bin width for the command histogram. The third sample
value is the maximum slope magnitude that results in a finite upper bound on the elas-
ticity. The fourth sample value is the minimum slope magnitude for which the elasticity
bounds exist and are equal. This is the same elasticity estimate that one obtains with
the trapezoidal approximation made by Saez (2010). bunchbounds outputs elasticity
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bounds for three values of the slope: trapezoidal approximation, user-provided slope
magnitude, m(#), and the maximum slope magnitude that results in a finite upper
bound.

2.2 The bunchtobit command

bunchtobit uses bunching, Tobit regressions, and covariates to point identify the elas-
ticity of a response variable with respect to changes in the slope of the budget set. The
syntax, options, and description of this command are as follows:

Syntax for bunchtobit

bunchtobit depvar
[
indepvars

][
if

] [
in

] [
weight

]
, kink(#) s0(#) s1(#)

[
binwidth(#) grid(numlist) nopic numiter(#)

savingtobit(filename[,replace]) verbose
]

depvar must be one dependent variable (the response in logs in many applications).

kink(#) is the location of the kink point and must be a real number in the same units
as the response variable.

s0(#) is a real number. In many applications, it is the log of the slope before the kink
point.

s1(#) must be a real number that is strictly less s0(#). In many applications, it is
the log of the slope after the kink point.

Entries for depvar , kink(#), s0(#), and s1(#) are required, whereas options inside
the square brackets are not required.

Options for bunchtobit

indepvars is a varlist of covariates. Heterogeneity is a linear function of these covariates
and an unobserved error that is normally distributed conditional on these covariates.

if and in restrict the working sample, like many other Stata commands.

weight follows Stata’s weight syntax and only allows frequency weights, fweight.

binwidth(#) is the width of the bins for the histograms. It must be a strictly positive
real number. The default value is half of what is automatically produced by the
command histogram.

grid(numlist) is a numlist of integers from 1 to 99. The values in the numlist correspond
to percentages of the sample that define symmetric truncation windows around the
kink point. The truncated Tobit model is estimated on each of these samples and also
the full sample so that the number of estimates is always one more than the number
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of entries in numlist. For example, if grid(15 82), then bunchtobit estimates the
Tobit model three times using 100, 82, and 15 percent of the data around the kink
point. The default value for the numlist is 10(10)90, which provides 10 estimates.

nopic suppresses displaying graphs. The default is to display graphs.

numiter(#) is the maximum number of iterations allowed when maximizing the Tobit
log likelihood. It must be a positive integer and the default is 500.

savingtobit(filename[,replace]) saves filename.dta with Tobit estimates for each trun-
cation window. The filename.dta file contains eight variables corresponding to the
matrices that the code stores in r(). See Section 3.3 for more details. Use replace if
filename.dta already exists.

verbose displays detailed output from the Tobit estimation including iterations of max-
imizing the log likelihood. Non-verbose mode is the default.

Description for bunchtobit

The user enters the name of the response variable, the location of the kink point, and
the slopes before and after the kink point. Before applying the command, all of these
entries must be transformed into units that satisfy the DGP from Equation 1. For
example, in the tax setting of Saez (2010), dollars of taxable income and the dollar
value of the kink point are transformed by taking logs, and the slopes must be input as
the log of one minus the marginal tax rates.

bunchtobit estimates multiple mid-censored Tobit regressions using specified sub-
samples of the data. It starts with the entire sample, then it truncates the sample to
symmetric windows centered at the kink as specified by the user. The elasticity estimate
is plotted as a function of the percentage of data used in each truncation window. The
code also plots the histogram of the response variable along with the best-fit Tobit
distribution for each truncation window.

The user has the option of entering covariates that help explain the unobserved
heterogeneity. Lemma 2 by Bertanha, McCallum, and Seegert (2021) demonstrates
that the distribution of the unobserved heterogeneity conditional on covariates does not
need to be normal for the Tobit estimates to be consistent. Consistency requires (i) the
unconditional distribution of heterogeneity is a semi-parametric mixture of normal dis-
tributions averaged over the included covariates; and (ii) the unconditional distribution
of the response variable predicted by the Tobit model fits the observed distribution of
the response variable well. If the user does not enter covariates, then the unconditional
distribution of heterogeneity needs to be normal.

3 Examples for bunchbounds and bunchtobit

In this section, we use simulated data to illustrate bunchbounds and bunchtobit. These
examples are motivated by the Earned Income Tax Credit that is investigated by Saez
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(2010) and Bertanha, McCallum, and Seegert (2021). As such, sometimes we refer to
the simulated outcome data as “earnings” and the slope of the incentive schedule as
“marginal tax rates.” The units of the outcome also corresponds to log thousands of
dollars.

3.1 Simulated data

We consider a data generating process from Equation 1 with one kink at k = log (8) =
2.079 given by

yi =


0.5 log (1.3) + n∗

i , if n∗
i < log (8)− 0.5 log (1.3)

log (8), if log (8)− 0.5 log (1.3) ≤ n∗
i ≤ log (8)− 0.5 log (0.9)

0.5 log (0.9) + n∗
i , if n∗

i > log (8)− 0.5 log (0.9),

(3)

in which the elasticity is ε = 0.5 and the slopes of the budget constraint to the left and
right of the kink are s0 = log (1.3) = 0.2624 and s1 = log (0.9) = −0.1054 (representing
tax rates of t0 = −0.3 and t1 = 0.1). To be concrete, the income tax rate changes from
-30% to 10%, a 40 percentage point increase, and translates into a slope change in the
budget set of −0.368 = log(0.9) − log(1.3). The elasticity of 0.5 means that taxpayers
respond to this marginal tax rate increase by decreasing their labor supply (and income)
by about 18.4% (−0.184 = −0.368× 0.5).

We assume that ability is a function of covariates and unobserved error given by
n∗
i = 2 − 0.2x1i + 2.5x2i + 0.4x3i + νi, νi ∼ N (0, 0.5). The covariates x1, x2, and x3,

are correlated binary variables with properties given in Table 1.

Mean Std. Dev.
x1 0.2 0.4
x2 0.5 0.5
x3 0.3 0.46

Correlations
x1 x2 x3

x1 1
x2 0.2 1
x3 0.1 0.4 1

Table 1: Covariates’ proprieties

We simulate about one million weighted (100,000 unweighted) observations according
to Equation 3. Frequency weights are drawn from a standard uniform distribution and
we demonstrate how to employ weights throughout the bunching package.

In Figure 1, we graph the histogram of the one million observations in 100 bins. The
simulated outcome variable is bimodal due to the covariates, which highlights that the
unconditional distribution is not normally distributed. We graph the budget constraint
(black thick solid line) in (log-income, log-consumption) space. That budget set has a
kink, that is, a change in slope from 1.3 to 0.9 at the value of 2.079 (black thin solid
line) for log-income. The histogram in the same figure shows that individuals bunch
exactly at the kink point (gray bar).



10 Bunching using Stata

Kink

Increasing
utility (right)

0

1

2

3

4

5

C
on

su
m

pt
io

n 
(lo

g 
th

ou
sa

nd
s o

f $
)

0.00

0.20

0.40

0.60

0.80

1.00

Ea
rn

in
gs

 d
en

si
ty

 (1
00

 b
in

s)

0 2 4 6 8
Earnings (log thousands of $)

Data (left)
Budget constraint (right)
I.C. for n∗=k-εs0 (right)
I.C. for n∗=k-εs1 (right)

Figure 1: Histogram of simulated data

Bertanha, McCallum, and Seegert (2021) provide a complete description for how
utility maximization with heterogeneous preferences and income tax brackets results in
Figure 1, and we provide an overview here. The heterogeneity of agents’ preferences
is captured by n∗, and each value of n∗ corresponds to a different indifference curve
(I.C.). We graph two specific I.C.s, which correspond to the lower (black dotted line)
and upper (black dashed line) numerical thresholds in Equation 3, whose theoretical
counterparts are n (k, ε, s0) = k − εs0 and n (k, ε, s1) = k − εs1 in Equation 1. Many
I.C.s that are not graphed touch the budget set at the kink. In fact, the mass point
at the kink corresponds to all agents whose preference heterogeneity, n∗, lies in the
bunching interval, that is, n∗ ∈ [log (8)− 0.5 log (1.3) , log (8)− 0.5 log (0.9)].

The simulated data also exhibit bunching exactly at the kink point. In many em-
pirical applications, however, the bunching mass is dispersed in a small interval near,
instead of exactly at, the kink. We provide a solution to this issue in Section 4.

3.2 Estimating elasticity bounds

We begin by estimating the elasticity bounds using the location of the kink, log (8) =
2.0794, k(2.0794), tax rates on either side of the kink, s0 = log(1.3)=0.2624 and
s1=log(0.9)=-0.1054, and a choice of the maximum slope, m(2). The bunching pack-
age and simulated data are available from the Boston College Statistical Software Com-
ponents (SSC) archive provided by Research Papers in Economics (RePEc).

. ssc install bunching
checking bunching consistency and verifying not already installed...
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installing into c:\ado\plus\...
installation complete.

. webuse set "http://fmwww.bc.edu/repec/bocode/b/"
(prefix now "http://fmwww.bc.edu/repec/bocode/b")
. webuse bunching.dta

. bunchbounds y [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) m(2)

Your choice of M:
2.0000

Sample values of slope magnitude M
minimum value M in the data (continuous part of the PDF):
0.0000

maximum value M in the data (continuous part of the PDF):
0.3879

maximum choice of M for finite upper bound:
1.5930

minimum choice of M for existence of bounds:
0.0090

Elasticity Estimates
Point id., trapezoidal approx.:
0.4894

Partial id., M = 2.0000 :
[0.3913 , +Inf]

Partial id., M = 1.59 :
[0.4055 , 0.9374]

The bunchbounds command estimates the bounds for the elasticity using different
slope values. First, the output shows that we entered a maximum slope of 2 and the
bounds for this slope are [0.3913,∞]. Second, the command also estimates the bounds
using the maximum slope for a finite upper bound, when the maximum slope given
is greater than that value. In this case, the maximum slope for a finite upper bound
is 1.5930, resulting in the bounds [0.4055, 0.9374]. In both cases, the true elasticity
estimate of 0.5 is within these bounds. The output also gives the estimated minimum
and maximum slopes of the continuous portion of the probability density function of the
data. These slopes are 0 and 0.3879. The point-identified elasticity using the trapezoidal
approximation (which is the Saez (2010) estimator) of 0.4894 is also provided.

The non-parametric bounds are also graphed by bunchbounds for different maximum
slope magnitudes of the unobserved heterogeneity PDF. These different slope magni-
tudes are plotted on the horizontal axis and the corresponding bounds are plotted on
the vertical axis. For this example, these are given in Figure 2a. This figure shows how
the upper bound, depicted as a dashed line, increases and the lower bound, depicted as
a solid line, decreases as the maximum slope increases. The vertical lines in Figure 2a at
0.01 and 1.59 denote the minimum slope for the existence of the bounds and the max-
imum slope for a finite upper bound, respectively. The point identified elasticity using
the trapezoidal approximation occurs where the bounds come together —the dash-dot
horizontal gray line in Figure 2a.

The bunchbounds command can also be combined with conditional statements that
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Figure 2: Estimating elasticity bounds

restricts to subsamples of the data based on values of different covariates but cannot
otherwise be conditional on covariates. For example,

bunchbounds y if x1==1 & x3==0 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) m(2)

estimates the bounds when x1 = 1 and x3 = 0. Restricting to subsamples when
x1 = 1 or x1 = 0 have similar syntaxes. The output from these commands (not shown) is
similar to the output without conditioning and the bound estimates for each subsample
are graphed in Figures 2b, 2c, and 2d. The bounds shift only slightly for each subsample
because the true elasticity is 0.5 for all subsamples and because the number of weighted
observations is large.

3.3 Semi-parametric point estimates of the elasticity

We estimate the elasticity using a truncated Tobit model that allows for covariates.
Truncation and covariates provide robust estimation that relies on semi-parametric as-
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sumptions and does not require the unobserved heterogeneity PDF to be normally
distributed (Bertanha, McCallum, and Seegert 2021). We demonstrate the robustness
of this method by comparing estimates of the correctly specified model with estimates
from a misspecified model that still recover the true elasticity.

Correctly specified Tobit model

We begin by estimating the correctly specified model using bunchtobit.

. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.

bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 .50938668 .00218386 0 0
2 90 .50756197 .00224619 0 0
3 80 .50898083 .00227815 0 0
4 70 .50808053 .00229178 0 0
5 60 .50848689 .00231719 0 0
6 50 .50660888 .00236933 0 0
7 40 .50975777 .00251876 0 0
8 30 .50959025 .00273068 0 0
9 20 .50463572 .00317585 0 0

10 10 .47913201 .00419053 0 0

The command estimates the elasticity for ten different subsamples by default. The
first uses all the data, the second uses 90% of the data around the kink, the third uses
80% around the kink, and so on. Estimation proceeds in 10 percentage point intervals
declining down to the last subsample that uses only 10% of the data. Each subsample
is truncated symmetrically, centered around the kink, and includes the observations at
the kink. For the data simulated by Equation 3 and using the 90% truncated subsample
as an example, about 42.5% of the data are from below the kink, about 42.5% of the
data are from above the kink, and about 5% of the data are from the kink. The fraction
of data at the kink does not change with this type of truncation. For example, the 10%
subsample uses about 2.5% of the data above and below the kink and about 5% from
the kink.

Because the model is correctly specified, the estimates reported in the elasticity

column are always very close to the true value of 0.5 for any truncated subsample.
Standard errors in column st err are small because the simulated data includes one
million weighted observations. The standard errors increase as the percent of data used
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decreases because we use fewer observations. The table also reports the number of
covariates that were omitted because they were collinear in column # coll cov and
when optimizing the log likelihood did not converge to a maximum in column flag.
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Figure 3: Correctly specified truncated Tobit estimates

Along with this numeric output, bunchtobit also produces a best-fit graph for each
subsample and a graph of the elasticity estimate for all subsamples. Figures 3a, 3b, and
3c display these best-fit graphs for the 100%, 50%, and 20% truncation subsamples, re-
spectively. Each of these panels presents a histogram of yi (gray bars) and the estimate
of the correctly specified and truncated Tobit model implied outcome variable (black
solid line). The model is correctly specified and so it fits the data well for all trun-
cated subsamples. Figure 3d plots the estimate (black solid line) and 95% confidence
interval (gray shading) for each truncated subsample corresponding to the elasticity
column. The elasticity is the main parameter of interest but the covariate coefficients
for the smallest value in the numlist provided in grid(numlist) can be obtained by us-
ing the estimates replay command. For example, truncating to 77% of the data for
the correctly specified model and then using estimates replay provides the following
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output:

. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)
> grid(77)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 2, 100% of data.
Truncation window number 2 out of 2, 77% of data.

bunchtobit_out[2,5]
data % elasticity std err # coll cov flag

1 100 .50938668 .00218386 0 0
2 77 .50849786 .00228162 0 0

. estimates replay

------------------------------------------------------------------------------
active results
------------------------------------------------------------------------------

Log pseudolikelihood = -.96353496 Number of obs = 770,197

( 1) [eq_l]x1 - [eq_r]x1 = 0
( 2) [eq_l]x2 - [eq_r]x2 = 0
( 3) [eq_l]x3 - [eq_r]x3 = 0

------------------------------------------------------------------------------
| Robust
| Coefficient std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
eq_l |

x1 | -.2876614 .0035942 -80.03 0.000 -.2947059 -.2806168
x2 | 3.541998 .0038313 924.49 0.000 3.534488 3.549507
x3 | .5509258 .0036639 150.37 0.000 .5437448 .5581069

_cons | 3.022123 .0033913 891.13 0.000 3.015476 3.02877
-------------+----------------------------------------------------------------
eq_r |

x1 | -.2876614 .0035942 -80.03 0.000 -.2947059 -.2806168
x2 | 3.541998 .0038313 924.49 0.000 3.534488 3.549507
x3 | .5509258 .0036639 150.37 0.000 .5437448 .5581069

_cons | 2.757436 .0035784 770.58 0.000 2.750422 2.764449
-------------+----------------------------------------------------------------
lngamma |

_cons | .347303 .001056 328.87 0.000 .3452331 .3493728
-------------+----------------------------------------------------------------

sigma | .7065912 .0014946 .7051302 .7080553
cons_l | 2.135406 .0030205 2.129486 2.141326
cons_r | 1.94838 .0033687 1.941778 1.954983

eps | .5084979 .0022816 .504026 .5129697
------------------------------------------------------------------------------

Olsen (1978) introduces a reparameterization that is discussed in (Hayashi 2000, Ch.
8.3) that ensures the log likelihood of a classical Tobit model is globally concave. That
reparameterization divides each coefficient of the covariates by the standard deviation
of the errors and we use the same reparameterization in our log likelihood. The results
output by estimates replay report these reparameterized coefficients instead of the
original coefficients. The reparameterization can be reversed by multiplying the repa-
rameterized coefficients by the standard deviation. For example, the estimate of the



16 Bunching using Stata

coefficient on x2 from Equation 3 can be recovered as 3.54× .71 = 2.51.

The elasticity reported in column elasticity for the 77% subsample is from the
estimate eps in the active results table shown by estimates replay. The first
equation, eq l, coefficient estimates on x1, x2, and x3 are from the left-hand side of the
kink and are the same as the estimates from the second equation, eq r, on the right of
the kink. These coefficients are constrained to be the same on the left and right sides
of the kink as reflected by the three constraints ( 1), ( 2), and ( 3), at the top of
the table and consistent with Equation 3. Because the model is correctly specified, the
covariate coefficient estimates are consistent and the estimates shown by estimates

replay are close to the (reparameterized) truth for each coefficient.

Incorrectly specified Tobit model

The correctly specified Tobit model from the previous section satisfies the assumption
that νi is normal and therefore always fits the observed distribution of yi. A misspecified
model that does not have normally distributed errors will not always fit the distribu-
tion of yi well. However, Bertanha, McCallum, and Seegert (2021) prove that if the
Tobit model’s best-fit distribution matches the observed distribution of yi, then the
Tobit model estimates the elasticity consistently whether or not the distribution of νi is
normal. This section demonstrates this robustness property using a misspecified model
that does not have normal errors. Specifically, we omit the covariate x2 and estimate
the following model.

. bunchtobit y x1 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.

bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 .64269795 .00284279 0 0
2 90 .7643775 .00347177 0 0
3 80 .74113376 .00338469 0 0
4 70 .68969711 .00316174 0 0
5 60 .61191992 .00282291 0 0
6 50 .52858461 .00248579 0 0
7 40 .5125595 .00253649 0 0
8 30 .5103475 .00273716 0 0
9 20 .50446138 .00317555 0 0

10 10 .48052761 .0056067 0 0
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The misspecified model returns an elasticity estimate of 0.643 using 100% of the
data. This is a substantially biased estimate of the true elasticity of 0.5 and Figure 4a
shows that the misspecified model does not fit well.

We can truncate the sample to use data only local to the kink, however, to attenuate
the effect of omitting x2. In Bertanha et al. (2021, Lemma 2), we show that if the Tobit
distribution of the fitted outcome (the black solid lines in Figures 4a to 4c) matches
the true distribution of the outcome variable (the gray bars in those figures), and the
unconditional distribution of n∗ is a mixture of normals, then the elasticity estimated
by the Tobit is consistent for the true elasticity, regardless of whether the conditional
unobserved distribution, Fn∗|X , is normal.

Moreover, the smaller the truncation window, the easier it is to fit the unconditional
distribution of the outcome variable with a Tobit, and the stronger is our conviction
that the estimate of the elasticity is consistent.
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Figure 4: Incorrectly specified truncated Tobit estimates

Figure 4 demonstrates that using smaller truncation windows around the kink im-
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proves the estimated distribution fit. Figure 4b uses 50% of the data and fits much
better than the estimate that uses all of the data in Figure 4a. Figure 4c uses 20%
of the data local to the kink and fits even better than the 50% subsample. Figure 4d
shows that for all subsamples that use 50% of the data or less, we recover an estimate
that is close to the true elasticity of 0.5. The largest truncation region for which the
estimated distribution fits the observed distribution is context specific. For the example
given in Figure 4, using 50% of the data around the kink is the largest subsample of
data that provides a good fit to the outcome distribution. But for other datasets, the
largest truncation region that fits the outcome distribution well could use any fraction
of the data, and could be very small indeed.

4 Friction errors

Many datasets have friction errors which are defined as when the bunching mass is
dispersed in a small interval near, instead of exactly at, the kink. Friction errors can
be caused by measurement error, optimizing frictions (Chetty et al. 2011), or other
distortions. When friction errors are present, they must first be filtered out before a
bunching estimation method can be applied.

The procedure implemented by bunchfilter is a practical way of filtering out fric-
tion errors. It works by fitting a polynomial to the empirical CDF of the response vari-
able with friction errors, yfrici. It excludes observations in a specified interval around
the kink during estimation and allows the intercepts to differ to the left and right of
that interval. The estimated CDF is then extrapolated into the excluded interval, which
constitutes an estimate of the CDF of the response variable without friction errors, yi.
The inverse of the extrapolated CDF evaluated at each observation produces the filtered
variable and the difference between the intercepts at the kink provides the estimate of
the bunching mass.

This filtering method produces consistent estimates of the distribution of the re-
sponse variable without frictions under three conditions. First, the friction error, ei,
must be independent and identically distribute (iid) with known and bounded support.
We emphasize that it is not necessary for the friction error to be mean zero, or for the
distribution of friction error, f (ei), to be symmetric or parametric. Second, friction
errors must only affect bunching individuals. Third, the CDF of yi without friction
error must equal a polynomial in a known neighborhood of the kink that is bigger than
the support of the friction error.

4.1 The bunchfilter command

bunchfilter removes friction errors from data generated by a mixed continuous-discrete
distribution with one mass point plus a continuously distributed friction error. The dis-
tribution of the data with friction error is continuous and does not have a mass point.
This type of data is common in economic bunching applications. For example, the dis-
tribution of taxable income usually has a hump around the kink where the marginal tax
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rate changes, instead of a mass point at the kink. The syntax, options, and description
of this command are as follows:

Syntax for bunchfilter

bunchfilter depvar
[
if

] [
in

] [
weight

]
, kink(#) deltam(#) deltap(#)

generate(varname)
[

binwidth(#) nopic pctobs(#) polorder(#)
]

depvar must be one dependent variable (the response in logs in many applications).

kink(#) is the location of the kink point and must be a real number in the same units
as the response variable.

deltam(#) is the distance between the kink point and the lower bound of the support
of the friction error to be filtered. It must be a real number in the same units as the
response variable.

deltap(#) is the distance between the kink point and the upper bound of the support
of the friction error to be filtered. It must be a real number in the same units as the
response variable.

generate(varname) generates the filtered variable with a user-specified name of var-
name.

Entries for depvar , kink(#), deltam(#), deltap(#), and generate(varname) are
required, whereas options inside the square brackets are not required.

Options for bunchfilter

if and in restrict the working sample, like many other Stata commands.

weight follows Stata’s weight syntax and only allows frequency weights, fweight.

binwidth(#) is the width of the bins for the histograms. It must be a strictly positive
real number. The default value is half of what is automatically produced by the
command histogram.

nopic suppresses displaying graphs. The default is to display graphs.

pctobs(#) for better fit, the polynomial regression uses observations in a symmetric
window around the kink point that contains pctobs(#) percent of the sample. It
must be a positive integer between 1 and 99 and the default is 40.

polorder(#) order of polynomial for the filtering regression. It must be a positive
integer between 1 and 7 and the default is 7.
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Description for bunchfilter

The user enters the variable to be filtered (for example, the log of income), the location
of the kink, and size of a region around the mass point that contains the hump (in other
words, kink - deltam, kink + deltap). bunchfilter fits a polynomial regression
to the empirical CDF of the variable observed with error. This regression excludes
points in the hump window and has a dummy for observations on the left or right of
the kink. The fitted regression is used to predict values of the empirical CDF in the
hump window with a jump discontinuity at the mass point. The filtered variable is then
recovered from the inverse of the predicted CDF evaluated at the empirical CDF value
for each observation in the sample.

This procedure works well for cases where the friction error has bounded support
and only affects observations that would be at the kink in the absence of error. A proper
deconvolution theory still needs to be developed for a filtering procedure with general
validity.

4.2 Example for bunchfilter

We show how to remove the friction errors as a precursor to estimating the relevant
elasticity in this example. We simulate the outcome variable with friction errors as

yfrici = yi + eiI (yi = log (8)) , (4)

in which yi is from Equation 3, ei are iid truncated normal from
f (ei) = ϕ (ei) / [Φ (log (1.1))− Φ (log (0.9))], the standard normal PDF is ϕ (·), and Φ (·)
is the standard normal CDF. The errors have known and bounded support [log (0.9) , log (1.1)],
which ensures frictions never add to or subtract from yi by more than log 10 percent.
The three conditions needed for bunchfilter to consistently estimate yi discussed in
Section 4 are satisfied by Equation 4.

We generate the filtered variable, yfiltered, and Figure 5 by applying bunchfilter
to the outcome variable with friction errors using the following command (output not
shown)

. bunchfilter yfric [fw=w], kink(2.0794) deltam(0.12) deltap(0.12) generate(yfiltered)
> binwidth(0.084) pctobs(30)

We exclude log 12 percent below the kink, deltam(0.12), and log 12 percent,
deltap(0.12), above the kink because we know this excluded region will capture the
support of the friction errors because the example frictions in Equation 4 never add to
or subtracts from yi by more than log 10 percent.

Without the friction errors, 5.17% of the responses bunch at the kink in the simulated
data from Equation 3. Including friction errors lowers this fraction to zero because no
observation are exactly at the kink in Equation 4. After removing the frictions with
bunchfilter, the filtered data has 5.15% of the responses at the kink. The histogram
of yfrici is shown in Figure 5a. The unfiltered data (black colored bars) exhibits diffuse
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Figure 5: Effect of bunchfilter on data with friction errors

bunching around the kink point. The filtered data is saved in the variable yfiltered

by invoking the option generate(yfiltered). The histogram for the filtered data is
depicted in the (gray bars) with evident reassignment of original dispersed observations
around the kink to the kink point exactly. This reassignment can also be seen in the
contrast between the filtered and unfiltered CDFs in Figure 5b. Both of these figures
are produced by the bunchfilter command.

5 Automatic estimation

Despite friction errors and model misspecification, bunching provides multiple estimates
of the true elasticity by implementing bunchbounds, bunchtobit, and bunchfilter

automatically. The user can provide outcome data with friction errors and a misspecified
model and bunching can still recover estimates that are close to the true elasticity.

5.1 The bunching command

The Stata command bunching is a wrapper function for three other commands: bunchbounds,
bunchtobit, and bunchfilter.

Syntax

bunching depvar
[
indepvars

] [
if

] [
in

] [
weight

]
, kink(#) s0(#) s1(#) m(#)[

nopic savingbounds(filename[,replace]) binwidth(#) grid(numlist)

numiter(#) savingtobit(filename[,replace]) verbose deltam(#)

deltap(#) generate(varname) pctobs(#) polorder(#)
]



22 Bunching using Stata

The syntax and options for bunching are inherited from the three commands for
which it is a wrapper function, and so we do not repeat them here. Entries for the first
four options, kink(#), s0(#), s1(#), and m(#) are required whereas options inside
the square brackets are not required. bunching always implements bunchbounds and
bunchtobit. In contrast, bunchfilter is only called by bunching if all the required
entries for bunchfilter, namely, deltam(#), deltap(#), and generate(varname),
are specified.

5.2 Example using bunching

The following example uses bunching with the outcome data from Equation 4 but omits
weights and the covariate x2 in order to demonstrate the robustness of this package.

. bunching yfric x1 x3, kink(2.0794) s0(0.2624) s1(-0.1054) m(2) binwidth(0.084)
> deltam(0.12) deltap(0.12) gen(ybunching) pctobs(30)
***********************************************
Bunching - Filter
***********************************************
[ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ]
***********************************************
Bunching - Bounds
***********************************************
Your choice of M:
2.0000

Sample values of slope magnitude M
minimum value M in the data (continuous part of the PDF):
0.0000

maximum value M in the data (continuous part of the PDF):
0.3334

maximum choice of M for finite upper bound:
1.5530

minimum choice of M for existence of bounds:
0.0792

Elasticity Estimates
Point id., trapezoidal approx.:
0.4930

Partial id., M = 2.0000 :
[0.3926 , +Inf]

Partial id., M = 1.55 :
[0.4087 , 0.9480]

***********************************************
Bunching - Tobit
***********************************************
Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.
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bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 .63579175 .00894356 0 0
2 90 .75808395 .01094832 0 0
3 80 .73437664 .01066292 0 0
4 70 .6836851 .00996446 0 0
5 60 .60786249 .00891428 0 0
6 50 .52680042 .00787451 0 0
7 40 .50716643 .00796644 0 0
8 30 .50457921 .00858105 0 0
9 20 .501674 .01001586 0 0

10 10 .5076258 .02029615 0 0

bunching first filters the data using bunchfilter. It then implements bunchbounds
on the filtered outcome using the full sample and maximum slope magnitude as specified.
Finally, it uses bunchtobit on the filtered outcome with the covariates specified, x1 and
x3, for each of the 10 default truncated subsamples.
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Figure 6: Elasticity estimates with friction errors and model misspecification
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Along with numeric output, bunching produces the graphs produced by each of
bunchfilter, bunchbounds, and bunchtobit commands. Selections from these graphs
are shown in Figure 6. The output from bunching shows that after we filter the data,
the bounds contain the true value of 0.5 (Figure 6a). Likewise, estimates from the Tobit
model in the numeric output show that using a 40% subsample or less recovers the true
elasticity of 0.5 despite friction errors and model misspecification. Truncating to 40% of
the data provides a good fit as shown in Figure 6b, and Figure 6c shows that truncating
to 20% also provides a good fit. Figure 6d shows that estimates with confidence intervals
include the true elasticity of 0.5 for subsamples with 40% of the data and less.

6 Concluding remarks

Our new bunching package provides a series of estimation methods that enable re-
searchers to examine the sensitivity of their elasticity estimates to different identi-
fication assumptions. The new techniques include bounds based on non-parametric
assumptions and a mid-censored regression based on semi-parametric assumptions and
covariates. The non-parametric assumptions are the most flexible of the two approaches
and nest the trapezoidal approximation assumption, which was the method utilized by
the original bunching estimator. These methods can be applied in cases with multiple
kinks at each kink separately if the constraint is continuous preceding the kink under
study. bunching has broad applicability because budget constraints with kinks occur
in a variety of fields within economics and other social sciences.
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