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Abstract

The growth of many industries, neighborhoods, and cities differ with

some growing slowly and others experiencing rapid change—i.e., rushes.

To explain these differences and illuminate the mechanisms of growth, we

develop a model centered on a new trade-off between time-varying funda-

mentals and time-invariant—but rank-dependent—opportunities. Early

growth depends on the opportunities new entities provide, whether from

accumulating entrepreneurship human capital in firms, real estate in neigh-

borhoods, or land in cities. Our model can explain the existence of rushes

and their size. We provide suggestive empirical evidence on industry

growth, neighborhood change, and city growth consistent with the model

predictions.
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1 Introduction

The growth of some neighborhoods, industries, and cities is slow and steady, while

others experience periods of rapid change. Neighborhoods rise, fall, segregate, or gen-

trify rapidly. Industries experience booms or busts. Cities may see large population

swings when there is a sudden influx of new residents. To rationalize these patterns, we

propose a novel model where agents trade off time-varying benefits and time-invariant—but

rank-dependent—opportunities. Benefits depend on the stock of other agents in an industry,

neighborhood, or city at any given time; whereas opportunities are locked-in by the time

an agent arrives there. To fix ideas, consider the choice between two industries, an estab-

lished, large one and a new, small one. Each pays wages that increase as its size grows

over time, and thus the established industry initially pays more while the new one pays

less. If this was the end of the story, agents would not move to the new industry and

forfeit higher wages in the established one. Yet, moving early may confer extra gains

that agents seek to exploit. The new industry may, for example, offer rank-dependent

opportunities that compensate for the lower initial wages: workers in new industries

generally have a higher rank in the younger firms and are given a broader portfolio of

tasks, which allows them to accumulate more human capital.

The addition of rank-dependent opportunities to standard models of cities, human

capital, and gentrification provides novel insights on their growth and solves a persistent

coordination problem in those models. Without rank-dependent opportunities, individ-

uals are unwilling to move to new entities—a general term that can refer to a firm, a

city, or a neighborhood, among others—before the time-varying benefits in these new

entities equal those in established ones. In standard models of urban growth, for exam-

ple, this coordination problem causes models to fail to explain the slow growth of new

cities before old cities become grossly oversized (Anas, 1992).1 With rank-dependent

opportunities, individuals are generally willing to forgo some time-varying benefits in

order to secure higher opportunities. The creation and growth of cities, industries, and

neighborhoods, therefore, depend critically on the shape of these opportunities.2

1Henderson and Venables (2009) provide a new urban model to solve the coordination problem using
fixed assets such as land.

2Our proposed mechanism builds on insights from timing games beginning with Smith (1974), Fu-
denberg, Gilbert, Stiglitz and Tirole (1983), and Fudenberg and Tirole (1985). Our model follows others
that have used timing games to investigate games of investment with option value (Boyer, Gravel and
Lasserre, 2004; Oprea, Friedman and Anderson, 2009; Anderson, Friedman and Oprea, 2010) and games
of preemption and wars of attrition (Park and Smith, 2008; Anderson, Park and Smith, 2017).
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We show that when opportunities exist, are initially increasing, and eventually de-

crease with respect to agents’ arrival rank, the new entity must grow suddenly as agents

rush to opportunity: many agents rationally move simultaneously from the established

entity to the new one, causing sudden growth in the latter. The intuition for this result is

that there are benefits to being an early arriver—but not being first. When opportunities

first increase with arrival rank, agents rationally wait for others to move as they have no

incentive to preempt the rush. The unique rush size must then occur where the marginal

opportunity equals the average opportunity and agents have no incentives to outlast the

rush. Through a series of comparative statics, we show how the model can explain sev-

eral counterintuitive empirical growth phenomena. For example, quite surprisingly, a

rush occurs earlier and is larger when the opportunities are spread across more agents.

The model also predicts that growth will be slower when the difference in opportunities

between ranks increases.

When opportunities are monotonically decreasing in agents’ arrival rank, the new

entities grow slowly, without rushes. The intuition is similar to that of a game of war of

attrition: in equilibrium, the larger benefit of being the kth entrant compared to being

the k+ 1th entrant must be offset by the cost of receiving lower benefits in the new entity

for a longer duration, thus leading to slow growth. Said differently, if there is a large

benefit to being first relative to second, for example, then entrants are willing to move

earlier to secure that larger benefit. Yet, growth will be slow and there cannot be a rush

because agents would have an incentive to preempt the rush: being the k − 1th mover

just before the rush allows for discontinuously greater opportunities forever, but for

lower time-varying income for an infinitesimal period, which cannot be an equilibrium.

We illustrate the general idea by applying our framework to settings where rank-

dependent opportunities matter: cities, industries, and neighborhoods. We add rank-

dependent opportunities to standard models and show that in the updated models, the

opportunity function characterizes growth and can produce rushes.

First, starting with cities, we show how the question of city formation may be viewed

as the outcome of a rush.3 Being early to a new place allows one to secure the best

location, which may compensate for moving from a larger place that provides higher

income to a smaller one that provides lower income. Using the creation of Lexington and

Louisville, Kentucky, as an example, we illustrate the comparative statics prediction that

3Glaeser (2013) provides historic examples of booms and busts in the US land and housing markets.

3



a rush occurs earlier and is larger when the opportunities are spread across more agents.

The land surrounding Louisville is heterogeneous in suitability to build, due to distance

to the river and rapids and the presence of excessive swampland. By constrast, Lexington

is located in the center of the inner Bluegrass Region, which provides vast amounts of

fertile and homogeneous land. Put differently, Louisville’s opportunity function was

relatively steep while Lexington’s was relatively flat. This implies that the latter should

have an earlier and larger rush, a prediction borne out in the data.

Second, we highlight the existence of rushes in neighborhoods by analyzing gentri-

fication. Being an early mover to a less affluent neighborhood provides opportunities—

especially in terms of real estate appreciation—yet is risky if the neighborhood does not

improve. Our model predicts that rapid change occurs more systematically in initially

more risky places where the opportunity function is flatter. Using block-level informa-

tion for New York, Boston, and Philadelphia, we show these predictions are borne out

in the data: conditional on gentrification, rapid change occurs more frequently in more

risky places that are closer to the CDB (Rosenthal and Maloney, 2022), have an older

housing stock, lower housing prices, and lower average income.4 Opportunities provide

a novel explanation for faster change in more risky areas.

Last, we posit that industry and entrepreneurship growth can partly be explained

by the tradeoff workers face between higher incomes and opportunities to gain en-

trepreneurship human capital. First, consider finance and the technology industry

(‘tech’) in the 1980s. Finance is well established, while tech was just beginning. Wages

were higher in finance, but individuals could be a higher rank in tech firms. As a re-

sult of these differences in pay and opportunities, our model predicts a rush in the tech

industry—consistent with the tech boom in the 1990s. Second, consider differences in

entrepreneurship across cities. Liang, Wang and Lazear (2018) suggest that it is easier

to gain human capital in areas that are relatively young, where it is more likely for a

young person to be of higher rank within their firm. Consistent with our model, we find

that younger counties have more entrepreneurship. For example, Burlington, VT, with a

median age of 36.5, had 9 new business application per 1,000 people between 2005 and

2020, while Provo, UT, with a median age of 25, had 16.

The remainder of the paper is organized as follows. Section 2 lays out the general

4Our results complement the literature on long-run housing cycles of neighborhood change (Rosenthal,
2008; Rosenthal and Ross, 2015) by looking at a mechanism that explains rapid short-run changes.
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model. It characterizes its solution and the existence and size of rushes. Sections 3 to 5

present our three examples and the suggestive empirical evidence. Section 6 concludes.

Formal proofs and details on our data are relegated to the appendix.

2 Model

We want to understand how opportunities that arise in new entities shape their creation,

rapid transformation, and growth. To this end, we first construct a general model in

Section 2.1 and provide its solution in Section 2.2. We then apply it to three examples in

Sections 3 to 5.

2.1 General setup

There are two entities, denoted 1 and 2.5 Time is continuous and indexed by t. There is

a potential total population N ≡
∫ ∞

0 Ñ(t)dt of homogenous individuals, where Ñ(t) de-

notes the mass at time t. Let N(t) ≡ Ñ(t)/N be the normalized population. We assume

its growth dN(t)/dt ≡ Ṅ(t) ≡ η(t) > 0 is exogenous and known by all individuals. It

can be nonmonotonic, i.e., there can be periods of faster or of slower growth.

Let N1(t) and N2(t) denote the populations in entities 1 and 2 at time t, respectively.

All individuals begin in entity 1, defined as the established entity, and choose a time

τ ∈ [0, ∞) to move to entity 2, defined as the new entity. Let Ṅ2 ≡ m(t) ≥ 0 denote

the population growth in entity 2, which is entirely due to individuals that move from 1

to 2. Since total population growth is η(t), it must be that Ṅ1(t) = η(t)−m(t).

The mass of individuals who have moved to entity 2 before time τ defines the popu-

lation there at τ : N2(τ ) ≡ M(τ ) =
∫ τ

0 m(t)dt, and Ṁ(t) = m(t). Individuals who move

to entity 2 at time τ are given a rank equal to the mass of individuals M(τ ) who moved

before them. We explain later under which assumptions we can index individuals unam-

biguously by their rank. For simplicity, individuals who move to entity 2 are assumed to

subsequently stay there forever. This implies that m(t) ≥ 0. We derive conditions below

to ensure this assumption is satisfied.6

5This assumption is imposed for convenience and can be easily relaxed to the more general case with
numerous entities. See Seegert (2015) for the context of cities.

6This assumption is unnecessary if all individuals who move at time τ receive the average opportunity.
In that case, individuals have no incentives to move back to location 1. It is also unnecessary if there exist
large fixed costs of moving, i.e., if the cost of moving back to location 1 is sufficiently large.
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Individuals move between entities based on utility differences. Each entity i = 1, 2

provides utility from two sources: (i) rank-independent but time-varying benefits Yi(t),

hereafter income; and (ii) rank-dependent but time-invariant opportunities, hereafter op-

portunities. We assume income in i depends on i’s population but not directly on time:

Yi(t) = Yi(Ni(t)). We further assume it is continuously differentiable and subject to first

economies and then diseconomies of scale as follows:

Yi(0) = 0, Y ′
i (Ni) ⋛ 0 for Ni ⋚ N̂i, (1)

where N̂i defines the (unique) income-maximizing population of entity i. Assump-

tions (1) ensure that, as the population grows, there are benefits for individuals to

concentrate in one entity but that it is not efficient for all individuals to indefinitely

concentrate in the same entity. For ease of exposition, we assume that the total popula-

tion at time zero is greater than entity 1’s income-maximizing population: N(0) > N̂1

so that Y ′
1 (0) < 0. Put differently, there are decreasing returns to population in the es-

tablished entity 1, which provides incentives to leave it and move to the new entity. Yet,

since Y2(0) = 0, nobody would make the first move based on income alone, i.e., if there

were no opportunities in the new entity.

Without loss of generality, we normalize opportunities in entity 1 to zero. Opportuni-

ties in entity 2 depend on individuals’ ranks, i.e., on when they moved to that entity. We

model them by an opportunity function, R(M(τ )) > 0 for all M(τ ). We assume that R is

continuously differentiable and single peaked. The average opportunity between ranks

M and M +∆M is defined as RM (∆M) = (1/∆M)
∫M+∆M
M R(m)dm. Opportunities

are eventually decreasing in rank but can initially be increasing:

R′(M) ⋛ 0 for M ⋚ M̂ , and R(M) < R0(M) for some M > M̂ , (2)

where M̂ ≥ 0 defines the (unique) opportunity-maximizing population of entity 2. Regu-

larity assumptions (2) exclude opportunity functions that are always increasing, initially

decreasing and then increasing, and initially increasing and then decreasing at an insuf-

ficient rate (we assume opportunities must eventually fall below those of the first movers

to the new entity). Observe that the opportunity an individual secures by moving to en-

tity 2 solely depends on his rank M(τ ), which itself depends on the time τ of the move.

After that, the opportunity is locked-in and stays constant over time.
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An individual’s life-time utility depends on his income and—conditional on whether

and when he moves from 1 to 2 at time τ—his rank-dependent opportunity profile:

U
(
τ ,M(τ )

)
=

∫ τ

0
e−rtY1

(
N(t)−M(t)

)
dt

+
∫ ∞

τ
e−rtY2

(
M(t)

)
dt+

∫ ∞

τ
e−rtR

(
M(τ )

)
dt (3)

=
∫ τ

0
e−rtY1

(
N(t)−M(t)

)
dt+

∫ ∞

τ
e−rtY2

(
M(t)

)
dt+

R
(
M(τ )

)
r

e−rτ ,

where r denotes the discount rate. Observe that this utility function is differentiable in

the time of the move, τ , for any differentiable profile M(t). We show later that this is

the case when opportunities are decreasing in time t, in which case there is slow growth

of the new entity. Yet, in the general case there may be atoms in the distribution M(t),

which precisely occurs when there are periods of rushes.

We define rushes as the case where nobody moves until time τ (i.e., m(t) = 0 for

t < τ ), whereas a mass ∆M of agents move simultaneously at time τ . We show later that

there will be at most one rush in equilibrium, so that agents are either part of that rush

at period τ or indifferent in moving sometimes after the rush. Assuming that all agents

who move during a rush receive the same average opportunity, life-time utility is:

U
(
τ ,M(τ )

)
=

∫ τ

0
e−rtY1

(
N(t)

)
dt+

∫ ∞

τ
e−rtY2

(
M(t)

)
dt+

RM

(
∆M

)
r

e−rτ . (4)

On top of assumptions (1) and (2), we impose two additional restrictions to focus on

equilibria where population growth in entity 2 begins at an interior time (t > 0) and is

nonnegative (m(t) ≥ 0). First, we assume that the initial benefit of staying in entity 1 is

greater than that of moving to entity 2, irrespective of the mass ∆M of agents that leave

entity 1 at τ0 = 0.7 Formally, limτ→τ0
dU(τ ,M(τ ))

dτ

∣∣
τ0=0,M(τ0)=∆M

> 0 for all ∆M ≤ N(0).

Using (3), this requires that:

Y1
(
N(0)−∆M

)
− Y2(∆M) > R(∆M) +

Ṙ(∆M)

r
, for all 0 ≤ ∆M ≤ N(0). (5)

7Since agents are homogeneous, this implies that m(0) = 0. To derive conditions for this to hold, we
consider what would happen if there was a single atom at t = 0. The latter implies that M (0) > 0, but
the function M is smooth afterwards (there is no second atom). We can hence write a (right) derivative
for life-time utility in τ and look at the limit as τ goes to zero.
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We can view the left-hand side of (5) as the difference in the flow payments (the benefits)

in entities 1 and 2, whereas the right-hand side is the continuation benefit from higher

opportunities received by moving now versus moving later. Condition (5) states that the

initial benefit of staying in entity 1 at τ0 = 0 is greater than that of moving to entity 2,

irrespective of the mass ∆M of moving agents.

Second, we impose a condition that allows us to focus on the fundamental trade-

off in the model: waiting in entity 1, which initially offers higher income, or moving

to entity 2, thereby forfeiting income in the short run but benefiting from better rank-

dependent opportunities in the long run. To this end, we impose two conditions on the

utility function—a primitive of the model. We assume utility increases with the timing

of the move, not taking into account changes in M(t), whereas utility decreases with the

mass of people that have moved before some point in time:

∂U(τ ,M)

∂τ
> 0, and

∂U(τ ,M)

∂M
< 0. (6)

The first condition means that opportunities in entity 2 become more valuable over time,

provided nobody moves to exploit them. This entices individuals ceteris paribus to

remain in the established entity and not move too early. The second condition means

that opportunities in entity 2 become less valuable at each point in time if more agents

have moved there before that point and grabbed those opportunities. This entices agents

ceteris paribus to not wait too long before moving to the new entity.8

2.2 Equilibrium

New entities provide opportunities. The price individuals pay for those opportunities is

the difference between the higher income they would have received in the original entity

and the lower income they accept in the new entity when moving there. In equilibrium,

for agents to move the price of the opportunity must equal its benefit.

[Insert Figure 1 about here.]

To provide the intuition for the trade-offs, we start with a graphical example. The

8If conditions (6) do not hold, there may be a time when growth in 2 becomes negative. As stated
before, we rule out this case.
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simplified Figure 1 depicts the price and benefit of the opportunities in the new entity.9

First, consider an individual who moves at time τ = 6 for opportunity A. This individual

receives an opportunity equal to 8 forever. The price of this opportunity is the income

in the original entity (Y1) net of the income (Y2) and opportunity (R) in the new entity.

Said differently, the area of the red triangle from (6,8), (6,16), and (18,8), which equals

48, quantifies the price paid by the individual for moving to the new entity. As the

difference in incomes decreases between the two entities, eventually the income plus

opportunity (which was locked in) in the new entity exceeds the income in the original

entity (starting at t = 18 in our example). The benefit of the opportunity is then given

by the area of the blue triangle (18,8), (30,8), (30,0), which equals 48 too. Similarly, an

individual who moves at time 12 for opportunity B, pays the price of 27 for a benefit of

27. Observe that, in equilibrium individuals are indifferent between moving at τ = 6 or

τ = 12, as required by (7). The growth m(t) of entity 2 is the variable that determines

in equilibrium the slopes of the net income and opportunity functions, with respect to

time, such that the price equals the benefit.

Let us now more formally analyze the equilibrium. The model defines a game. A

player’s strategy is the time τ he moves from entity 1 to entity 2 (conditional on being

in entity 1). Players receive payoffs according to equation (3), which depend on when

the player moves to entity 2 (i.e., τ ) and the distribution of when the other players move

to entity 2 (i.e., M(τ ) =
∫ τ

0 M(t)dt). We now construct an equilibrium toward the goal

of proving existence and uniqueness. It is fully characterized by M(t) that implicitly

defines a time of creation τ1 for entity 2 with initial size ∆M1 ≥ 0 at creation.10 Before

creation, we have by definition m(t) = 0, ∀t < τ1, and at time τ1 we have m(t) > 0 for

the first time. After creation, we focus on equilibria without period of inaction, defined as

equilibria in which entity 2 continually grows once created.11 Formally:

9Figure 1 has three simplifications. First, it gives income and opportunity functions that eventually hit
zero, when in reality they have an asymptote there. Second, it disregards discounting. Last, it assumes
time and the benefit of the opportunity stop at 30 instead of continuing forever.

10Since agents are homogeneous, we restrict the search to symmetric Nash equilibria. With a continuum
of agents, looking for pure strategy Nash equilibria—where each individual deterministically picks a time
τ to move—is equivalent to looking for mixed strategy equilibria (Sun, 2006)—where individuals mix
across times on when to move to entity 2 according to some probability distribution q(t). With a mass
N ≡ 1 of homogeneous agents over time, q(t) = m(t), and Q(t) =

∫ t
0 q(s)ds =

∫ t
0 m(s)ds ≡ M (t). The

equilibrium is characterized by the cumulative distribution Q(t). Following Anderson, Park and Smith
(2017), off-equilibrium behavior can be specified such that all Nash equilibria are also subgame perfect.

11The equilibrium without periods of inaction is the only equilibrium that survives a trembling-hand
refinement defined as a safe equilibrium (see Anderson, Park and Smith, 2017). It is unique, and an
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Definition 1. An equilibrium without periods of inaction is such that m(t) > 0 for all t ≥ τ1.

Entity 2 may be created in a ‘smooth’ way or suddenly via a rush. Assume a mass

∆M move at time τ . To uniquely index individuals by their rank, we assume in that case

that: (i) ranks are randomly attributed among the simultaneous movers; and (ii) each

individual in the rush receives the same average opportunity, which depends on the mass

M(τ ) of individuals who moved before the rush. An equilibrium can be constructed

using a no arbitrage condition and a boundary condition for creation of the new entity. The

no arbitrage condition is obtained by ensuring that individuals are indifferent between

moving now or in the ‘next period’.12 The boundary condition is obtained by ensuring

that no individual wants to preempt the rush.

We can prove the following result (see Appendix A.1 for details).

Theorem 1 (Existence and uniqueness of an equilibrium). There exists a unique ε-safe mixed

strategy Nash equilibrium.

Proof. The proof of Theorem 1 is shown in five steps in Appendix A.1. First, initially

moving to the new entity is worse than staying, given the regularity condition in equa-

tion (5). Second, eventually the second entity is formed because population growth

deteriorates income in the first entity. Third, there is a unique starting time where

the benefits of moving to the second entity exactly equals the cost. Fourth, the im-

plicit function theorem determines a unique growth pattern after the second entity is

started. Note the indifference condition in equation (7) creates a differential equation

∂U/∂τ = WMm(t) +Wτ = 0 with a known solution. Fifth, this equilibrium has no

period of inaction, satisfies the conditions for an ε−safe equilibrium, and no other equi-

librium exists without period of inaction that is not ε−safe (Anderson, Park and Smith,

2017).

extremal equilibrium such as this has the earliest starting time. Milgrom and Roberts (1994) suggest
focusing on such extremal equilibria.

12Formally, ∂U
(
τ ,M (τ )

)
/∂τ = 0 whenever m(t) > 0. Differentiating (3), using Leibnitz’s rule, and

rearranging, this condition is given by:

e−rτ [Y1
(
N1(τ )−M (τ )

)
− Y2(N2(τ ))−R(M (τ ))

]
− Ṙ(M (τ ))

r
= 0. (7)

Recall that (3) is differentiable if M has no atoms, but that it is not generally differentiable at τ1 when there
is an atom. In that case, (7) must hold for t > τ1 (using a right derivative at t = τ1), whereas U(τ ) ≤ U(τ1)
for all τ ∈ [0, τ1) in equilibrium (no agents wants to preempt the rush).

10



Having established existence of equilibrium, we can analyze how growth of entity 2

changes with the fundamentals of the opportunity function. Consider first how growth

changes as the opportunity function becomes flatter—said differently, as the difference

in opportunities individuals receive shrinks—i.e., |R′(M)| becomes smaller.

Proposition 1 (Rate of growth). A flatter opportunity function causes the growth of entity 2

to be faster when individuals are moving to entity 2.

Proof. Rearranging equation (7), evaluated at τ = 0 and using Ṙ(M(τ )) = −R′(M(τ ))m(τ ),

directly yields

m(τ ) =
r
[
Y1
(
N1(τ )−M(τ )

)
− Y2(N2(τ ))−R(M(τ ))

]
−R′(M(τ ))

, (8)

which is larger for smaller (absolute) values of R′(M(τ )).

Equation (8) shows that the growth rate of entity 2 increases as the opportunity

function becomes ‘flatter’. The result that small differences in opportunities encourage

growth may at first seem counterintuitive. To understand it, remember that, in equilib-

rium, differences in opportunities must be offset by differences in incomes an individual

receives. Therefore the benefit in terms of opportunities from being mover M rather than

mover M + ε must be offset by the fact that by moving earlier an individual foregoes

more net income for a longer period. Consider the extreme case where everyone would

receive the same opportunities, regardless of when they move to entity 2, i.e., a flat op-

portunity function. In this case, there cannot be any period of prolonged slow growth,

because individuals that move early will always have an arbitrage opportunity by wait-

ing. In other words, there is a first-mover penalty. The alternative is then that entity 2

‘grows infinitely fast’ by experiencing one giant rush of agents. This result highlights

the importance of the shape of the opportunity function for determining the pattern of

equilibrium growth.

2.3 Rushes

The model may deliver (interior) equilibria with slow growth, where m(t) > 0 over

some interval and where the no arbitrage condition holds (e.g., as in Figure 1). However,

the model may also deliver (corner) equilibria with rushes: nobody moves from 1 to 2

11



before τ1, while at t = τ1 there is a sudden movement of a mass ∆M of agents to entity 2

which steadily grows afterwards (m(t) > 0 for t ≥ τ1 as we look at equilibria without

periods of inaction per Definition 1). Formally, a rush corresponds to an equilibrium that

exhibits atoms. It can only occur when the trade-off between income and opportunities

is non-monotone. Proposition 2 provides the conditions for entity 2 to be formed by

a rush.

Proposition 2 (Existence of rushes). A necessary and sufficient condition for every equilibrium

to involve a rush is that the opportunity function is nonmonotonic and initially increasing.

Proof. See Appendix A.2.

The intuition underlying Proposition 2 is depicted in Figure 2. First, consider a mono-

tonically decreasing opportunity function, as in panel (a).13 A rush does not exist in this

case because there is always an incentive to preempt it. The reason is as follows. Indi-

viduals in the rush receive the average opportunity R0(∆M) (recall that entity 2 is still

empty, hence RM (∆M) = R0(∆M)), and, when the opportunity function is decreasing,

this is less than the initial opportunity R(0). Thus, an individual who preempts the rush

receives a discontinuously larger opportunity forever, but forfeits some income over an

infinitesimal period. The former always dominates the latter and it follows that there

can be no rush at τ1 > 0 in that case. It follows that when the opportunity function is

monotonically decreasing, any equilibrium involves slow growth where m(t) > 0 and

where the arbitrage condition holds.

[Insert Figure 2 about here.]

Second, consider a nonmonotonic and initially increasing opportunity function, as

in panel (b) of Figure 2. The new entity cannot be created by slow growth in this case

because there is an incentive to wait. No agent wants to move first because doing so

entails both lower opportunities than that of the next mover and lower income. Hence,

agents wait. As time goes by, income in entity 1 eventually decreases enough so that

moving to entity 2 becomes more attractive. Yet, no agent will move individually since

13This is a generalization of the illustration in Figure 1 to the case where the opportunity and income
functions are not linear and do not hit zero. Whereas we depict Figure 1 as a function of time t, we plot
Figure 2 as a function of the mass M (t) of agents who have moved by time t. As explained before, we can
alternatively think about this as the agents’ rank.
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there cannot be slow growth (no agent has an incentive to be first since opportunities

are initially increasing). Thus, there must be a rush.

Proposition 3 provides results on the timing and the size of the rush.

Proposition 3 (Timing and size of rushes). There is at most one rush, and it occurs at time

τ1, when entity 2 is created. In an equilibrium with a rush, the size ∆M1 of a rush at time τ1 is

unique and occurs where the marginal opportunity equals the average opportunity, R(∆M1) =

R0(∆M1), i.e., at the maximum average opportunity.

Proof. We build on the intuition of Proposition 2 to show that there exists a rush at

time τ1. By Proposition 2, we know that, for there to be a rush, in equilibrium the

opportunity function must be nonmonotonic and initially increasing. By the reasoning

in Proposition 2, entity 2 cannot be created by slow growth if the opportunity function is

initially increasing because there will be an incentive for individuals to wait. Therefore

entity 2 must be created by a rush.14

The size of the equilibrium rush is such that there is no incentive to preempt the rush

and there is no incentive to outlast it. Let ∆M1 denote the mass of individuals who rush

at time τ1 to receive the average opportunity R0(∆M1), graphed in panel (b) of Figure 2.

Define three points: A, B, and C. Point A defines the peak opportunity M̂ . Point

B defines the point at which the average opportunity equals the marginal opportunity

R(∆M1) = R0(∆M1). Point C defines the point at which the average opportunity equals

the opportunity of the first mover: R0(Mmax) = R(0). To ensure there is no incentive

to preempt the rush, its size cannot be larger than point C.15 To ensure there is no

incentive to outlast the rush, its size cannot be smaller than point B. In equilibria without

periods of inaction (recall Definition 1), individuals must receive the same opportunities

being in a rush or moving right after the rush (recall m(t) > 0 for t > τ1; this is only

possible if the individual is indifferent between rushing at τ1 or moving afterwards).

Otherwise individuals would be unwilling to move right after the rush. This occurs

at the unique point where the marginal opportunity equals the average opportunity,

R(∆M1) = R0(∆M1), point B in Figure 2. The value ∆M1 is the unique equilibrium

rush size for equilibria without periods of inaction.16

14Thus, in equilibrium M (t) is discontinuous at most once and this occurs at τ1 when M (t) = 0.
15Figure 2 is drawn with M (τ ) on the x-axis, i.e., the size of the rush.
16For rush sizes larger than point B, the opportunity in the rush is strictly greater than the following

opportunity, R(∆M ) < R0(∆M1) for ∆M > ∆M1, causing there to be a period of inaction after the rush.
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To show that there cannot be a second rush, we proceed by contradiction. Suppose

that entity 2 is created at time τ1 by a rush of size ∆M1 and that a second rush occurs

at time τ2 > τ1. The opportunities for the mass ∆M2 of individuals in the second rush

are given by the running average RM2(∆M2). These average opportunities during the

second rush are strictly less than the ones right after the first rush, i.e., RM2(∆M2) <

R(M1) = R(∆M1). The reason is that, at the time of the second rush, the average

opportunity is decreasing because the equilibrium size of the first rush occurs at the

maximum of the average opportunity. Hence, the second rush cannot be an equilibrium

because individuals have an incentive to preempt it: by moving just before the rush, they

receive discontinuously greater opportunities forever and less income for an infinitesimal

period.

We next consider consider how the size of a rush, ∆M , changes with the opportunity

function. Proposition 3 demonstrates that the equilibrium size of the rush is determined

by the peak of the average opportunity function. From this condition, several compara-

tive static results follow. They are summarized in the following proposition.

Proposition 4 (Size of a rush). The size of a rush is unaffected by a proportional or a level

change in the opportunity function; i.e., Rϕ(M) = ϕR(M) or Rϕ(M) = R(M) + ϕ. The size

of a rush decreases as the domain is compressed; i.e., Rϕ(M) = R(ϕM), with ϕ > 1; and it

increases as the domain is stretched; i.e., Rϕ(M) = R(ϕM), with 0 < ϕ < 1.

Proof. See Appendix A.3.

The first two comparative static results show that policies or events that cause a

proportional or level shift of the opportunity function—such as a proportional tax or

subsidy—will not affect the size of a rush. The third comparative static result shows that

policies that spread the opportunities over fewer people will cause rushes to be smaller.

[Insert Figure 3 about here.]

Figure 3 provides examples of growth in entity 2 with proportional shifts and stretches

(or compression) of the opportunity function. The size of the rush is given by the upward

The period of inaction is costly to the individuals that rush because they receive a lower income in entity 2

for a longer period. In equilibrium, the period of inaction is uniquely determined for a given rush size,
such that the benefit individuals receive from a larger opportunity equals the cost incurred by receiving
lower income for a longer period.

14



jump on the y axis, which begins at some time given on the x axis. Both panels depict

growth with nonmonotone opportunity functions that cause entity 2 to be formed by a

rush. Panel (a) of Figure 3 depicts growth with a rush and two comparative growth paths

with proportional shifts in the opportunity function. The rush size does not change, but

the timing of the rush and the growth after the rush are both affected by a proportional

shift. For example, the long dashed line depicts growth with a proportional increase

in opportunities, which in comparison to the baseline growth path, begins earlier and

has slower equilibrium growth. Panel (b) of Figure 3 depicts growth with a rush and

two comparative growth paths with a stretched or a compressed opportunity function,

respectively. The stretched opportunity function (long dashed line) has a larger rush that

occurs earlier, because the income in entity 2, after the rush, is larger due to the larger

rush. After creation, the stretched opportunity function also leads to faster growth in

the new entity because it is flatter (see Proposition 1).

We now illustrate the broad applicability of our general framework using three ex-

amples. The first example considers the decision by individuals to stay in an established

city or move to a new one. The second considers the decision to stay in an established

neighborhood or to move to a gentrifying one. The last example considers the decision

to stay in an established firm or leave to start a new one or join a startup.

3 City growth

We investigate the growth of cities to highlight the existence of rushes and the predic-

tions of Proposition 2. We consider the opportunity of claiming better land in new cities.

The opportunity function differs across cities based on differences in the distribution of

land quality. In some cases, this leads to a rush and, in other cases, to slow growth.

3.1 Motivating example: Lexington and Louisville, Kentucky

We compare the creation and growth of Lexington and Louisville, Kentucky, to high-

light the potential for rushes given by Proposition 1. Louisville and Lexington, Ken-

tucky, provide an interesting comparison of the creation and growth of cities because

they are only seventy-five miles apart and were chartered within two years of each other

(1780 and 1782, respectively). Anecdotally, land was an important determinant for the
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growth of these cities, as it is in many contexts of urban growth (Wade, 1996). Louisville

is located next to the falls of the Ohio River, which were the only navigational barrier

on the river at the time. The falls created a stopping point—a portage site—that dis-

rupted the flow of traffic on the river. Like many other portage sites, this provided a

natural place to develop a city (Bleakley and Lin, 2012). The land surrounding the falls

is heterogeneous both in distance from the river and suitability to build, due to exces-

sive swampland. This suggests Louisville’s opportunity function was relatively steep.

In contrast, Lexington is not on a navigable river. However, Lexington is located in

the center of the inner Bluegrass Region, which provides vast amounts of fertile and

homogeneous land. This suggests Lexington’s opportunity function was relatively flat,

|R′(M(τ ))Lexington| < |R′(M(τ ))Louisville|.

[Insert Figure 5 about here.]

Given the differences in slopes, Propositions 1 and 4 predict that Lexington will

experience faster growth initially, even possibly being created by a rush. The model

predicts, however, that Louisville will eventually become larger, due to its transport

cost advantage. These predictions are corroborated by history, as shown in Figure 5.

Lexington experienced rapid growth reaching a population of 18,410 by 1790, only eight

years after being chartered. In the same year, Louisville’s population was 200, despite

being chartered two years earlier than Lexington. It took Louisville roughly 60 years for

it to surpass Lexington in population.

3.2 Model

We build on the canonical model of cities of Henderson (1974), where city size is deter-

mined by the trade-off between agglomeration and congestion externalities. The benefit

of living in a city is initially increasing with population but eventually decreases when

the city becomes too large. How new cities form as population in established cities

grows is a thorny issue in that literature because of coordination failure in migration

decisions (the so-called ‘migration pathology’): no one wants to be the only one to move

to a new place—which provides very low utility initially—so cities teem and become

grossly oversized before new ones can form.

The inclusion of the opportunity function solves this coordination failure. In the

context of cities, it is natural to think of land as providing opportunities to early resi-
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dents, though other examples surely exist. In particular, our opportunity function builds

on the insights from monocentric city models (Alonso, 1964; Mills, 1967; Muth, 1969).17

Early residents can acquire parcels of land closer to the center, which they value be-

cause of commuting costs or their option value. Individuals who arrive later must ac-

quire parcels farther from the center and incur larger commuting costs but have larger

parcels—reflecting the fact that density decreases from the center of the city. The growth

pattern of cities therefore depends on the trade-off between higher incomes in estab-

lished cities and opportunities in the form of more centrally located land in new cities.

Income function. Following Henderson (1974), we assume the aggregate production

function for some composite good in city i is Fi(Ni(t)) = Ai(t)Ni(t), where Ni(t) de-

notes the population at time t (which is also the labor input to production). Production

amenities (TFP) Ai(t) = aiNi(t)εi in cities are captured by the parameter ai, and the

agglomeration economies are subsumed by the term Ni(t)εi , where εi > 0 captures

matching, sharing, and learning externalities (see, e.g., Duranton and Puga 2004, and

Abdel-Rahman and Anas 2004, for extensive reviews of micro-foundations of external

economies of scale).

Given perfect competition, a worker’s wage wi equals the value of that person’s

marginal product of labor: wi(Ni(t)) = Ai(t) = aiNi(t)εi . Production of the composite

good also generates pollution, P (Ni(t)) = Fi(Ni(t))γi where γi > 0 is a parameter.18

Each individual is assumed to bear the average cost of the pollution produced within

the city. Hence every individual receives (net) income—‘consumption-based utility’—

as follows: Yi(Ni(t)) = wi(Ni(t)) − P (Ni(t))/Ni(t). This formulation ensures income

is zero with no inhabitants and then strictly rises and falls with population, consistent

with the inverted-∪ shape of Henderson (1974) and with our assumptions (1).

Opportunity function. In the canonical urban model, there are no rank-dependent

opportunities. Hence, since initially Y1(N(0)) > Y2(0) = 0, an individual who moves to

17Recent work has extended Henderson’s (1974) model to consider the creation and growth of new
cities. For example, Henderson and Venables (2009) build a dynamic model with durable housing capital
that avoids population swings in cities that arise in other urban models. Our model can be viewed as a
version that replaces the role of housing capital with opportunities that exist in cities.

18This parametric example of pollution is consistent with Tolley (1974)’s description on p. 334: “The
nature of pollution and congestion is that extra pollutants and vehicles do not shift production functions at
all at low amounts, and extra amounts have increasingly severe effects as levels are raised until ultimately
fumes kill and there are so many vehicles that traffic cannot move.”
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the new city 2 forgoes the higher income in the established city 1. Why would anyone

be willing to move to the new city 2? In the canonical urban model of Henderson (1974),

the short answer is: ‘They won’t.’19 For a new city to form, it must offer the same income

as the existing city. This requires city 1 to become grossly oversized so that income there

falls to zero; only then will a new city form in a catastrophic manner.

In our framework, individuals move because the new city provides opportunities that

the established one does not, and those compensate for foregone income. These oppor-

tunities depend on how many people have already moved to the new city. Specifically,

we model the opportunities in city 2 as parcels of land that individuals claim as they en-

ter the city. The first person who claims a parcel of land defines the center of the city. All

subsequent entrants claim a parcel that is adjacent and next in order to the previously

claimed parcel.

[Insert Figure 4 about here.]

We assume the city grows according to an Archimedean spiral, as Figure 4 shows.

The use of an Archimedean spiral to model city growth builds on the monocentric city

model pioneered by Alonso (1964), Mills (1967), and Muth (1969). Cities are often as-

sumed to grow as a disc from their centers, sometimes as concentric circles. The use of

a spiral allows the parcels to differ continuously in distance and area. Formally, assume

that the radius is given by the angle θ and production in the central business district

uses 2π+ 1 parcels of land, where π is the mathematical constant. Each parcel of land is

assumed to be formed by two lines radiating from the spiral’s pole with an angle of one

between them.20 Parcels differ in their area and distance from the center. Those who

arrive later have to progressively claim parcels that are farther away from the center but

are larger (see Figure 4).

The distance and area of a parcel can be derived as a function of rank M(τ ), using a

discrete analog depicted in Figure 4. The distance of the M(τ )th parcel from the center

of the city is given by the radius, which, given our assumptions, is simply M(τ ). Individ-

uals value the distance of their parcel to the center of the city because they incur a cost

19Anas (1992) provides an early example of a model of city growth in the absence of opportunities.
The dynamics of Anas (1992) suggest large swings in population when a new city is formed. This model
sparked research by Helsley and Strange (1994), Brueckner (2000), Cuberes (2009), and Henderson and
Venables (2009), which included land developers or durable housing to solve this collective action problem.

20The assumption that the angle between the lines radiating from the spiral’s poles is one implicitly
assumes there are 2 π parcels of land for a given rotation.
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of commuting, M(τ )ϕi , where ϕi > 0 is the elasticity of commuting costs with respect to

rank (and, implicitly, distance). The cost of commuting is allowed to be nonlinear with

respect to distance, capturing possible fixed costs and other deteriorating factors.21

Let αi(M(τ )) denote the area of the M(τ )th parcel, which is found by integrating

between the two curves θ and θ− 2π in polar coordinates between the angles M(τ ) and

M(τ ) + 1.22 This yields

αi(M(τ )) =
1
2

∫ M(τ )+1

M(τ )

[
θ2 − (θ− 2π)2

]
dθ = 2πM(τ )− 2π2 + π.

The area of the parcel an individual receives increases with rank, α′(·) > 0. Individ-

uals receive increasing value from the area of their parcel, according to the function

ρi(αi(M(τ ))), such that ρ′i(·) > 0. The opportunity an individual receives in the new

city is given by the (net) value of that person’s parcel:

Ri(M(t)) = ρi(αi(M(τ )))− ciM(τ )ϕi . (9)

City 2 is formed by a rush when, according to Propositions 2 and 3, the opportunity

function is nonmonotonic and initially increasing. Consider an area value function of

the form ρi = (δi(νi + αi(M(t))))ζ . Further, let δi = 1/(2π) and νi = 2π2 − π, such that

the value of land is normalized to zero for the person of rank 0, i.e., ρi(0) = 0. In this

case, the size of the rush is given by

∆M =

[
1
ci

ζ

ζ + 1
ϕi + 1
ϕi

] 1
ϕi−ζ

. (10)

The size of the rush increases with the value of the area of a parcel, specifically ζ , and

decreases with the costs of being farther from the center, specifically ci and ϕi. This

result suggests that cities with more heterogeneous land, where the cost of being further

from the center is greater, will experience smaller rushes. The growth patterns of cities

depend on the shape of the opportunity function. In this example, the parameter ci

characterizes how heterogeneous land is in city i. Consider two potential new cities that

21The model is general enough to allow for a host of factors that may deteriorate from the center, where
the best land is. Historically, this could be that land farther from the center is swampier or less suited for
building. The presence of rivers that have to be crossed as the city expands may also play a role.

22The area between two curves, r1 and r2, in between the angles a and b is given by 1
2

∫ a
b (r

2
1 − r2

2)dθ .
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differ only in that one has relatively more heterogeneous land. In the city where land is

heterogeneous, the value of being close is relatively greater, given by a high value of ci.

In this case, the equilibrium size of the rush is larger, the opportunity function is steeper

and, from the general results, we know that growth will be slower.

4 Gentrification

Neighborhoods rise, stagnate, and decline over either long cycles or short periods (see

Rosenthal and Ross 2015 for a recent survey). The latter—fast change such as neighbor-

hood tipping or gentrification—have in particular attracted substantial media and policy

attention, because their effects are highly visible and sometimes disruptive.

4.1 Motivating example: Pace of gentrification in NY, Boston, and

Philadelphia

In this motivating example, we consider the tradeoff individuals face when choosing

neighborhoods and how this can lead to either slow or fast gentrification. Through the

lens of our model, the tradeoff is that high-priced neighborhoods offer newer housing

stock, less crime, and better endogenous urban amenities, whereas low-priced neighbor-

hoods offer opportunities in selection, price, and stronger potential asset price appreci-

ation. Our general model shows that neighborhoods with nonmonotonic—or flatter—

opportunity functions will experience faster growth, i.e., will gentrify more rapidly. As

explained below, we view a flatter opportunity function as stemming from the presence

of asset risk in neighborhoods. In a nutshell, our model predicts that riskier neighbor-

hoods should experience more rapid change.

The fundamental tradeoff between high- and low-priced neighborhoods has changed

in the US since the early 1990s and led to what is now generally viewed as central city

revival and gentrification (Couture and Handbury, 2020). Before the 1990s, high crime

rates in central cities discouraged movement there and pushed people to suburban loca-

tions. Starting in the early 1990s, crime unexpectedly and substantially fell. As a result,

high-income individuals started to move to neighborhoods with high (yet decreasing)

crime, older housing stock, and low average income (Ellen et al., 2019).23

23Other deep underlying factors—such as land use regulations, the elasticity of housing supply, chang-
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Such moves were risky. Early movers in particular bear the risk that crime might not

fall as much as expected and that other high-income earners may not follow. In case the

neighborhood does not improve, early movers are then stuck with immobile assets that

require substantial renovations and maintenance (recall the housing stock is old in those

neighborhoods) and into which the may not want to invest more given the evolution of

the neighborhood (Rosenthal and Ross, 2015). The asset risk is, however, balanced by

better opportunities: early movers benefit from paying a lower price for their asset and

the ability to pick their preferred item from a large choice set. Furthermore, asset price

appreciation may be stronger in the future. Both faster subsequent price appreciation

in riskier neighborhoods and the asset price risk itself result in a flatter opportunity

function in our model, which thus predicts that we should see faster changes—rushes—

in riskier neighborhoods (Proposition 1 of our model).

We operationalize these ideas in Section 4.2 below using a simple version of our

model to explain rushes in gentrification. Consistent with our model we document in

Appendix B.1 that—conditional on gentrifying—riskier neighborhood in Boston, New

York, and Philadelphia experienced faster changes than less risky neighborhoods during

the period 1990–2010. We follow recent work on the risk-return tradeoff in real estate

and measure risk by the neighborhoods’ distance to the central business district (CBD).

Our data show the latter is strongly correlated with the age of the housing stock, with

more recent housing being concentrated in the suburbs. Hence, the source of risk is

mainly related to the age of the housing stock, as highlighted in our model.24 We find

that, conditional on gentrifying, neighborhoods with more risk as measured by the age of

their housing stock were more likely to experience a rush. Across our three metropolitan

areas, a gentrifying neighborhood with a housing stock built in 1964 (75th percentile) is

3.44 percent less likely to experience a rush than a gentrifying neighborhood with a

housing stock built in 1940 (25th percentile), conditional on gentrifying and a number of

ing valuations of urban amenities, and the life-cycle of the housing stock—also drive the pace and scope
of gentrification (Rosenthal, 2008; Rosenthal and Ross, 2015).

24Rosenthal and Maloney (2022, pp.2-4) find that neighborhoods closer to the CBD are riskier neighbor-
hoods as measured by the volatility of year-over-year housing returns: “home price appreciation rates decline
almost monotonically with distance to the closest city center [. . .] home price volatility declines with distance from
the CBD and is 13% lower for zipcodes 10 miles away from the center.” This price appreciation is the counterpart
of higher non-systematic or idiosyncratic asset price risk in neighborhoods closer to the CBD. Standard
asset pricing models predict that this risk must be compensated by larger price appreciation, which is
precisely what Rosenthal and Maloney (2022, p.2) find: “home prices appreciate faster in city centers, in part
because of risk-return tradeoffs.”
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other controls. This represents a 5.5% increase from the baseline probability of 62.7% of

experiencing rapid change.

4.2 Model

Theoretically, we view gentrification as a form of a rush: slow changes in neighbor-

hood fundamentals modify the value of rank-dependent opportunities, which can trig-

ger rapid and profound transformations as gentrifiers rush into new neighborhoods.25

We have shown that rapid growth occurs when opportunities are flatter. To illustrate

Proposition 1, we propose a model where the opportunity function differs across neigh-

borhoods, based on differences in housing stock and local amenities. In some cases, this

leads to rapid growth (gentrification).

Income Function. Assume entities 1 and 2 are two neighborhoods and that N1(t)

and N2(t) denote the population of highly educated and affluent residents living in

those neighborhoods. Each resident derives utility from real income, w/P , and from

neighborhood-specific amenities, Ai. Nominal income w is assumed to be the same

for each resident and location—residents work somewhere else in the city and do not

change jobs when moving between neighborhoods. The income function—the instan-

taneous utility—in neighborhood i at time t is given by Yi(Ni(t)) = Ai(Ni(t))
w

Pi(Ni(t))
,

where Ai(Ni(t)) = aiNi(t)ε are local ‘amenities’ (e.g., good schools, social networks, or

specific public or private goods) that depend on the number of highly educated residents

living in the neighborhood; and Pi(Ni(t)) =
[
P

γ
+(ciNi(t))γ

]1/γ is a cost-of-living index

of neighborhood i.

Two comments are in order. First, observe that Ai(0) = 0, i.e., highly educated

residents receive zero instantaneous utility from having no other highly educated in the

neighborhood. Furthermore, A′
i > 0, i.e., amenities are increasing in Ni, with elasticity

ε. This captures the idea that utility derived from social interactions, the provision of

specific public and private goods, or school quality (which depends on peer effects and

funding) all increase with the number affluent people in a neighborhood.26

25The slow changes in neighborhood fundamentals—the deep causes of gentrification—are not yet well
identified, but they involve some combination of rising incomes, declining crime rates, deteriorating hous-
ing stock that gets torn down and renewed, change in industrial structure such as de-industrialization,
and sometimes just “surprises."

26Clearly, there is an ‘income risk’ in the neighborhood, which depends on the decisions of the others.
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Second, Pi(0) = P
γ , where P is the baseline price level in the absence of highly

educated residents in the neighborhood, and P ′
i > 0; i.e., cost-of-living increases with

the number of highly educated residents in the neighborhood. This may be because the

prices of many consumption amenities increase with income and with land prices that

drive up production costs. For example, the difference between drinking coffee made at

home to high-end coffee shops selling pour-over coffees.27

To satisfy condition (1), we assume that γ > ε. When this holds, the amenity effect

initially dominates, whereas the cost-of-living effect takes over when the number of

highly educated residents increases enough.

Opportunity Function. As equation (3) shows, the decision to move from 1 to 2 de-

pends on income—instantaneous utility—and rank-dependent opportunities. Without

opportunities, no one wants to be the first to move since Y1(N(0)) > Y2(0) = 0.

In the context of gentrification, and in line with our motivating example, we think

real estate provides opportunities of two sorts. First, there are potential monetary gains

from real estate, depending on the arrival rank and subsequent price appreciation. If

one arrives early prices are still relatively low, which offers opportunities for sizeable

capital gains in the long run. Second, there are potential gains related to choice. Early

movers to a neighborhood can pick from a larger set of properties that are up for sale,

which may be especially important in areas with on old housing stock. Opportunities

decrease as the choice set shrinks, so late movers have lower rank-dependent utility, as

they pick from a smaller set and are potentially stuck with a less-preferred choice in the

long run. To summarize, early movers can pick their preferred choice at a low price.

There is, however, a third channel that pulls in the opposite direction. Empirically,

neighborhoods that may gentrify in the future have initially a relatively old housing

stock (see, e.g., Rosenthal, 2008; Brueckner and Rosenthal, 2009). Since affluent residents

prefer high-quality housing, moving to that neighborhood requires that agents either

replace the old housing or must renovate the old place to suit their needs (Munneke

and Womack, 2015). The value of that investment is highly idiosyncratic, since people

have very different tastes for houses. In a nutshell, if an individual invests $1,000,000

This is at the heart of our model because the new entity must offer lower income than the established one.
27There are generally two effects at work. First, increasing production costs as land and other production

factors become more expensive. Second, a less elastic demand when incomes are high, which allows
producers to charge higher markups.
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into renovating his dream loft, that dream might only be worth $500,000 to someone

else. Early movers hence face more risk on the secondary market if the neighborhood

ends up not gentrifying in the end. If, for whatever reason, they must move out of the

neighborhood they need to resell the renovated (or new) place. If there is little or no

demand from affluent agents who want to move there, they will not be able to recoup

a large share of their sunk cost. In other words, the part of the cost they can recoup is

increasing in the rank at which they move to the neighborhood.

Formally, let mi(M(τ )) and ρi(M(τ )) be the matching value and the price (including

renovation costs) of housing, which depend on the mass M(τ ) of agents who arrived

before τ in i. Naturally, m′
i < 0 as the choice set gets smaller. We further assume that

ρ′i > 0: waiting longer entails a higher price as properties appreciate and as the average

quality of available housing decreases. Thus the price-adjusted matching value mi/ρi is

decreasing in arrival rank.

We model the direct asset price risk using a secondary-market value function. Let

e−ζiM(τ ) be the expected share of investment lost as a function of arrival rank, where ζi

is a neighborhood-specific risk parameter. A low ζi denotes a risky neighborhood. The

expected loss is ρi(M(τ ))e−ζiM(τ ), and we assume that this expected loss is decreasing

with arrival rank, which requires ρ′i(M(τ ))/ρi(M(τ )) < ζi. Then the full opportunity

function is given by

Ri(M(τ )) =
mi(M(τ ))

ρi(M(τ ))
− ρi(M(τ ))e−ζiM(τ ), (11)

which is hump-shaped in arrival rank M(τ ). Being there early is good (larger choice set

and more room for appreciation of the house), but being there too early might be bad,

since only a small part of the irreversible investment can be recouped in case the agent

has to move somewhere else and the neighborhood has not yet taken off.

Observe that the opportunity function (11) can be flatter for two reasons: (i) when

the asset price risk is larger (lower ζi); or (ii) when ρ′i is larger, i.e., price appreciation is

faster. When this is the case, our model predicts that growth is faster and rushes occur,

in line with the empirical evidence summarized in our motivating example and detailed

in Appendix B.1.
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5 Entrepreneurship

We finally investigate the growth of entrepreneurship, where opportunities allow to

acquire entrepreneurship human capital. First, we provide a motivating example looking

at geographies across the United States. Second, we build a model of entrepreneurship

in the context of two industries. In both cases, opportunities to gain entrepreneurship

human capital depend on whether the geographic area or industry is relatively young.

Younger areas and newer industries provide more opportunities than older areas and

established industries.

5.1 Motivating examples: Finance and Tech. and Provo and Utah and

Burlington, Vermont

In this motivating example, we posit that workers trade off pay for experiences that

help them gain entrepreneurship human capital (Becker, 1962). Further, we suggest that

the experiences that build entrepreneurship human capital depend on a worker’s rank

within an industry or firm. Early workers are given a broader portfolio of tasks to do

that may more quickly build entrepreneurship human capital. In addition, early workers

gain a better understanding of how the firm and industry operate and may be able to use

that knowledge to start their own business. We consider differences in growth between

industries and differences in entrepreneurship in cities in the US to investigate whether

rank-dependent opportunities help explain these differences.

First, consider the growth between the 1980s and 2000s in finance (an established

industry) and technology or ‘tech’ for short (a new industry). Several stylized facts

match our model’s predictions. First, wages are initially higher in finance than in tech.

Second, an individual could be of higher rank in the tech industry than in finance—

but there was risk in tech due to fewer jobs. This characterization of the opportunities

suggest that they were nonmonotonic—you wanted to be early but not first. Third, as

the model predicts with a nonmonotonic opportunity function, there was a tech boom

(a rush), where the industry grew rapidly.28

Second, consider entrepreneurship in Provo, Utah and Burlington, Vermont. Provo

28In Appendix B.2, we provide additional evidence consistent with our mechanism of opportunities due
to higher human capital accumulation in the younger industry. For example, we find the growth rate of
entrepreneurs is positively correlated with the tech industry’s growth and negatively correlated with the
finance industry’s growth.
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and Burlington are an interesting comparison because they are mid-sized cities with

populations of 116,886 and 163,414, respectively, with universities (Brigham Young Uni-

versity and University of Vermont, respectively). Despite these similarities, it is easier

for someone to be of higher rank (more senior) in Provo than Burlington because of

the demographics of these cities. Yournger individuals have a greater likelihood of be-

ing in a higher position in the firm they work for in areas with younger populations

(Liang, Wang and Lazear, 2018). Therefore, the rank of an individual in the age distri-

bution is particularly important for human capital accumulation, business acumen, and

entrepreneurship. In this comparison, Provo has a younger population than Burlington.

Specifically, Provo has a fertility rate that is relatively high at 256 birth per 10,000 people

in 1990 and 250 in 2007 and a median age of 25 in 2020, compared to 38 in the United

States. In contrast, Burlington has an older population with a fertility rate that is rela-

tively low at 150 births per 10,000 people in 1990 and 105 in 2007. The median age in

2020 in Burlington is 36.5, close to the average for the U.S. despite having a university.

In terms of the model, this suggests that there are more opportunities (the opportunity

function is flatter) in Provo than in Burlington to gain human capital necessary to start a

business.

Given the differences in opportunities, the model predicts that Provo will have a faster

growth of entrepreneurs than Burlington. This prediction is corroborated in the data. In

2020, Provo had 12,411 new business applications compared to 1,749 in Burlington. Over

a longer period, 2005 to 2020, Provo had 16 new business applications per 1,000 people,

while Burlington had only 9.

[Insert Figure 6 about here.]

The comparison of Provo and Burlington is consistent with broader patterns across

the United States. Figure 6 shows a bin scatter plot of all counties in the United States

with fertility in 1990 on the horizontal axis and average business applications from 2005

to 2020 on the vertical axis. Each dot represents roughly 160 counties. The red solid

line graphs the positive relationship between fertility and business applications. Said

differently, younger counties have a faster growth in new businesses.
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5.2 Model

We build our entrepreneurship model building on the idea that workers trade off earn-

ings and other benefits such as human capital accumulation (Becker, 1962). There are

opportunities to being early to an industry because early entrants have a higher rank or

seniority and gain more business acumen. We also allow for there to be costs to entering

an industry too early. For instance, there is increased displacement risk in young indus-

tries and that risk is especially high in smaller cities. In a nutshell, there are opportunities

to being early but not necessarily first.

Income function. Assume that entities 1 and 2 are two industries—one established

with N1(t) workers and one new with N2(t) workers. Each worker receives industry-

specific earnings that combine agglomeration and rivalry externalities, Ai(Ni) and Pi(Ni),

respectively, as follows. Yi(Ni(t)) = Ai(Ni(t)) + P (Ni(t)). As an industry grows, firms

can share suppliers and other fixed costs and better match with workers (Duranton and

Puga, 2004). Initially, these agglomeration benefits are large. Formally, we model this

as A(Ni(t)) = −ai[(1 + Ni(t))−1) − 1], following Buchanan (1965).29 As an industry

grows, competition increases, which bids up the cost of inputs. This rivalry exter-

nality is likely small initially and eventually grows large. Formally, we model this as

P (Ni(t)) = (Ni(t) + 1)−γ − 1, where γ < 1.

With these agglomeration and rivalry externalities, income is: (i) initially increasing

with the workforce in the industry and eventually decreasing; and (ii) initially higher

in industry 1 (the established industry) than in industry 2 (the new industry). Note

that, when industry 2 becomes sufficiently developed, it could provide higher incomes.

However, until industry 2 has a critical mass, workers who choose to work there forgo

the higher income in industry 1. Hence, for workers to move to industry 2, that industry

must provide them opportunities.

Opportunity function. Workers are willing to forgo higher incomes in the established

industry to gain entrepreneurship human capital in the new industry. The opportunities

to gain this human capital depend a worker’s rank within the industry.

29Buchanan (1965) used a similar specification to discuss the agglomeration benefits and congestion
costs of public goods. We refer to the assumption that income increases with industry size as agglom-
eration externality. Since the model is dynamic and since industry size Ni(t) reflects some accretion of
physical and human capital over the past, these terms can also be viewed as capturing industry maturity.
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For individuals to start a successful business they need, what is typically called,

“business acumen” (Liang, Wang and Lazear, 2018). Not all job experiences, however,

lead to business acumen. Individuals that are given low-level tasks likely gain less

business acumen than those who have a broader portfolio of tasks and decision-making

authority. The amount of human capital an individual acquires therefore depends on

that person’s rank within the industry. Individuals selecting an industry trade off the

initially lower incomes in the newer industry with the opportunity to accumulate human

capital that these industries provide by allowing them to move up more quickly.

Working in a new industry is not without risk, however. Individuals are much more

likely to be displaced in a new industry, due to increased demand and cost uncertainty.

The cost of displacement is not only the lost wages during transition but a loss of firm-

and industry-specific human capital, which that can lead to depressed future earnings

(Topel, 1990; Neal, 1995). The cost of this risk, however, decreases as an industry grows,

because the probability a worker can find a job within the industry increases.

Formally, assume there exists a rank M such that ranks greater than M do not benefit

from being early. Let an individual’s human capital accumulation mi(·) be an increasing

function of the share of the workforce si(·) below their rank M(τ ). The share of the

workforce below rank M(τ ) who benefits from being early in an industry is given by

s(M(τ )) =

[e−ρi(M−M(τ ))/M − 1]/(e−ρi − 1), if M(τ ) < M .

0, otherwise,

where ρi is the expected steady-state growth rate of industry i. We capture the risk to

workers in new industries as −ρiζiM(τ )e−ρiζiM(τ ), where a high ζi denotes a risky in-

dustry, and we maintain that ρiζi < 1. In this formulation, the risks are decreasing and

convex for industries with positive growth rates and increasing and convex for indus-

tries with negative growth rates. The opportunities a worker receives from moving to a

new industry combine the benefits of human capital accumulation and the risk due to

displacement as follows. Ri(M(τ )) = mi(s(M(τ )) + ρiζiM(τ )e−ρiζiM(τ ). If a new indus-

try were perfectly safe, ζi = 0, then the opportunity function would be monotonically

decreasing. Riskier industries, however, may cause the opportunity function to be hump

shaped—indicating the benefit of being early but not first.

28



6 Conclusion

Economic change in industries, neighborhoods, and cities is often characterized by

rushes—the rapid and simultaneous movement of new workers and firms from estab-

lished industries, cities, or neighborhoods to new ones. We have proposed a model that

generates such rushes. Contrary to the literature that explains rapid change and corre-

lations in individual decisions through what may be broadly called ‘information exter-

nalities,’ our model does not need the presence of such externalities.30 In our model,

rushes occur because agents trade off changes in incomes against rank-dependent op-

portunities. Being early is good, but being too early is not. When payoffs generated by

opportunities are non-monotonic, agents are enticed to wait—nobody wants to preempt

the rush and be first—but not wait too long—since opportunities become less valuable

after the rush has occurred. Put simply, “I’d rather be second than first, but not third.”

We have derived general results and illustrated them using simple models drawn

from urban economics and industrial organization. The applicability of our ideas is

broader than that because many economic phenomena offer payoffs that are a mixture

of size-dependent—but rank-independent—incomes and size-independent—but rank-

dependent—opportunities. The empirical motivating examples we have developed sug-

gest that our mechanism is relevant. Devising empirical tests that identify it, disentangle

it from alternative explanations—such as herding or information cascades—and quantify

its magnitude goes beyond this paper and is left for future research.

30Rational herding in financial markets (e.g., Devenow and Welch, 1996) may lead to periods of slow
movement—where investors follow the herd—followed by periods of sudden change as key investors
revise their positions in light of new information. Herding in investment decisions may cause suboptimal
investment delays and investment surges (see Chamley and Gale, 1994). The arrival of a new store, specific
types of businesses, or affluent residents in a deprived area may reveal information as to the viability of
the neighborhood, triggering an influx of other businesses or residents who waited for a signal to move
(Caplin and Leahy, 1998; Behrens, Boualam, Martin and Mayneris, 2022). Furthermore, firms adopt new
technology or enter into a region depending on information revealed by the decisions of others (Conley
and Udry, 2010; Ossa, 2013).
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Appendix A Proofs

Appendix A.1 Proof of Theorem 1

To show existence and uniqueness of the equilibrium, we use a natural refinement of

mixed strategy Nash equilibria in timing games, called ε-safe (Anderson, Park and

Smith, 2017). This refinement resembles a trembling hand refinement, and, in our con-

text, it ensures there is only one equilibrium rush size. It excludes equilibria where tiny

timing mistakes ε > 0 on both sides at time τ cause a significant payoff loss. This refine-

ment does not exclude equilibria if only early movement or only late movement causes a

significant payoff loss in equilibrium. In these cases, an individual could guard against

these losses by ensuring they were never early or never late. This provides the intuition

for the ε-safe payoff:

Uε(τ ,M(τ )) = max
{

infmax{t−ε, 0}≤s<tU(s,M(s)), infs∈[t,t+ε)U(s,M(s))
}

.

A Nash equilibrium is safe if there exists ε > 0 such that Uε(τ ,M(τ )) = U(τ ,M(τ )) for

all t ∈ [τ1, ∞) and for all ε ∈ (0, ε). Anderson, Park and Smith (2017) prove that this

refinement excludes equilibria with periods of inaction.

The following lemma will be useful for proving the theorem.

Lemma 1 (Regularity assumption). Assume the opportunity function R(M(τ )) is: (i) mono-

tonically increasing; or (ii) initially decreasing and then increasing. Then there does not exist an

equilibrium.

Proof. (i) Suppose toward contradiction there is an equilibrium for an entity with an

opportunity function that is monotonically increasing. Consider a deviation from this

equilibrium where an individual moves to entity 2 at time t+ ε instead of their equi-

librium prescribed time t > τ1, where τ1 is the time where M(τ ) > 0 for the first time.

This is a profitable deviation because the individual receives more income and more

opportunities. The income in entity 1 is higher than in entity 2. Therefore, there is no

equilibrium in which the opportunity function R(M(τ )) is monotonically increasing.

(ii) Suppose toward contradiction there is an equilibrium for an entity with an op-

portunity function that is initially decreasing and then increasing. Consider a deviation

from this equilibrium where an individual moves to entity 2 at time t+ ε instead of their

equilibrium prescribed time t > τ1. Further assume at time t and t+ ε, the opportunity
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function is increasing (we are beyond the minimum of the average opportunity). Then,

by the same reasoning as above, the deviation is profitable as the individual will receive

higher income and better opportunities.

We can now prove Theorem 1.

Proof. The proof of the theorem proceeds by construction and uses the regularity as-

sumption in equation (4), the Implicit Function Theorem, and the equilibrium refinement

ε−safe equilibrium (Anderson, Park and Smith, 2017).

Step 1: Initial period with no growth in entity 2. By condition (5), initially moving is

worse than staying (given any feasible size of movement).

Step 2: Eventual growth in entity 2. Given that population is growing and Y ′
1 (N(0)) <

0, there exists a time τ < ∞ and a mass of agents ∆M such that it is strictly better to

move: Y1(N(τ )−∆M) < Y2(∆M) +R(∆M) + Ṙ(t)/r.

Step 3: Unique starting time in entity 2. Proposition 3 establishes that there exists a

unique rush size ∆M1. Then, by smoothness of the income and opportunity functions,

there exists a unique point τ1 where entity 2 begins to grow, determined by Y1(N(τ1)−
∆M1) = Y2(∆M1) +R(∆M1) + Ṙ(τ1)/r.

Step 4: Implicit Function Theorem. Since utility is continuously differentiable after

τ1 (recall from Proposition 3 that there are no more atoms after τ1) m(t) solves the

equilibrium condition ∂U/∂τ = 0, for τ ∈ [τ1, ∞). The Implicit Function Theorem

implies, ∂τU(τ ,M(τ ))dτ + ∂MU(τ ,M(τ ))dM = 0 which reduces to

dM(τ )

dτ
= − ∂τU(τ ,M)

∂MU(τ ,M)
> 0

by condition (6). Therefore, there exists an equilibrium with m(t) ≡ dM
dτ > 0 for all

t ∈ [τ , ∞).

Step 5: ε−safe equilibria The constructed equilibrium is the only one without periods

of inaction and is a ε−safe equilibrium. Other potential equilibria with inaction are not

ε−safe equilibria (Anderson, Park and Smith, 2017).
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Appendix A.2 Proof of Proposition 2

Proposition 1 is proved in the main text. We now prove Proposition 2.

Proof. The proof involves four successive steps.

Step 1 (No equilibrium with slow creation). Assume (1.a) that the opportunity func-

tion is non-monotonic and initially increasing, as depicted in panel (b) of Figure 2, but

that there exists an equilibrium without a rush. For this to be an equilibrium there must

be no profitable deviation from the equilibrium strategy. Consider the first individual

to move to entity 2. Income there is lower than in the existing entity but increases with

time as more individuals move to entity 2. The opportunity function is also initially

increasing by assumption (1.a). This shows that the first individual has an incentive to

delay his move, thereby avoiding some time with lower income and receiving greater

opportunities associated with being of a lower rank. Therefore, there does not exist an

equilibrium where the entity is created with gradual migration when the opportunity

function is non-monotonic and initially increasing.

Step 2 (No rush with monotonic opportunities). To demonstrate that the creation of

an entity by a rush is possible only when the opportunity function is non-monotonic

and initially increasing, consider the cases with a monotonic opportunity function and a

non-monotonic opportunity function that is initially decreasing. Begin with a monotonic

opportunity function. The size of the rush is determined by the point at which the aver-

age opportunity function intersects the (marginal) opportunity function. For monotonic

opportunity functions the average opportunity function and the opportunity function

intersect only for the first mover (R0(0) = R(0)). For a rush of size ∆M , we have either

R0(∆M) < R(∆M) (when the opportunity function is increasing) or R0(∆M) > R(∆M)

(when the opportunity function is decreasing). Hence, the arbitrage condition is violated

and individuals pre-empt the rush if the opportunity function is decreasing or outlast

the rush if the opportunity function is increasing.

Step 3 (No rush with initially decreasing non-monotonic opportunities). Consider a

non-monotonic opportunity function that is initially decreasing, as depicted in Figure 7.

In this case, although there exists a ∆M such that R(∆M1) = R0(∆M1) it is the mini-

mum value for R0(∆M), as depicted in Figure7. Hence, there is room for arbitrage and
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individuals pre-empt the rush because R(0) > R0(∆M1). Hence, no equilibrium with a

rush exists.

Step 4 (Existence of equilibrium with a rush). To demonstrate that an equilibrium

exists where entity 2 is formed by a rush, consider the payoffs of individuals who create

that entity and who receive the average opportunity during the rush. The entity is

created where R0(∆M1) = (1/∆M1)
∫ ∆M1

0 R(M(t))dt, where the size of the rush is ∆M1.

This condition states that the average opportunity must equal the (marginal) opportunity

at the rank equal to size of the rush. If this condition did not hold, there would be

arbitrage opportunities: (i) for individuals in the rush to wait and move right after the

rush (if R0(∆M1) < R(∆M1)); or (ii) for individuals after the rush to join the rush (if

R0(∆M1) > R(∆M1)). Finally, there could be opportunities for individuals to pre-empt

the rush because R0(∆M1) > R(0). The latter inequality holds because the average

opportunity is maximized where it intersects the marginal opportunity. Therefore, there

exists an equilibrium where entity 2 is formed by a rush when the opportunity function

is non-monotonic and initially increasing.

[Insert Figure 7 about here.]

Appendix A.3 Proof of Proposition 4

Proposition 3 is proved in the main text. We now prove Proposition 4.

Proof. The size of the rush is determined by

1
∆M

∫ ∆M

0
R(M(t))dt = R(∆M),

Clearly, if Rϕ(M) = ϕR(M) or Rϕ(M) = R(M) + ϕ, we have

1
∆M

∫ ∆M

0
Rϕ(M(t))dt = Rϕ(∆M) ⇒ ϕ

∆M

∫ ∆M

0
R(M(t))dt = ϕR(∆M)

and

1
∆M

∫ ∆M

0
Rϕ(M(t))dt = Rϕ(∆M) ⇒ 1

∆M

∫ ∆M

0
R(M(t))dt+ ϕ = R(∆M) + ϕ,
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so that ∆M is the same in both cases. Any multiplicative or additive scaling does not

affect the point where the average equals the marginal.

Last, if Rϕ(M) = R(ϕM) we have

1
∆M

∫ ∆M

0
Rϕ(M(t))dt = Rϕ(∆M) ⇒ 1

∆M

∫ ∆M

0
R(ϕM(t))dt = R(ϕ∆M).

We know that the equality holds for ϕ = 1. Assume that ϕ > 1. The foregoing equation

continues to hold true for y = M/ϕ < M since ϕ > 1. Hence, the intersection between the

marginal and the average shifts to the left and the size of the rush decreases. Conversely,

when 0 < ϕ < 1, we let y = M/ϕ > M since ϕ < 1. The intersection between the

marginal and the average shifts to the right and the size of the rush increases.

Appendix B More detailed empirical illustrations

Appendix B.1 Gentrification: NY, Boston, and Philadelphia

Data. We use block-level data from the 1990, 2000, and 2010 census waves for the New

York, Boston, and Philadelphia MSAs from Behrens, Boualam, Martin and Mayneris

(2022). These data come from the National Historical Geographic Information System

(NHGIS) of the population center at the University of Minnesota (available online at

https://www.nhgis.org). We use the concordance algorithm developed by Behrens,

Boualam, Martin and Mayneris (2022) to construct time-consistent blocks that allow to

meaningfully look at decadal changes of the variables at that geographic scale. We gather

information on residents and housing units counts that are directly available at the block

level. Several other variables—such as total income or the number of residents by ed-

ucational attainment—are provided at a slightly higher level of aggregation, the block

group. In that case, we apportion those variables to blocks using block-level population

weights. Per capita and median household income, the age of the housing stock, as well

as median rents and housing values are also available at the block-group level; they are

directly imputed to the blocks nested within the block groups. Distance to the CBD is

measured as distance from Wall Street (New York), the Prudential Center (Boston), and

the Libery Bell (Philadelphia).
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Results. We compare gentrification in New York City, Boston, and Philadelphia to

highlight the conditions that lead to rapid growth given in Proposition 1.31 We define a

neighborhood as gentrifying if its share of highly educated residents—defined as having

at least some college education—grew twice more than the city-wide share. Following

Behrens et al. (2022), we measure neighborhood change at a fine geographic scale by

using time-consistent block-level data from the 1990, 2000, and 2010 censuses.

Let ∆edut,t−1
i ≡ edut

i − edut−1
i denote the change in the share of educated in block i

between Census waves t− 1 and t. Let further ∆edut,t−1
city ≡ edut

city − edut−1
city denote the

corresponding city-wide change. Finally, define the excess change in the share of educated

for block i between 1990 and 2010 as the difference compared to the city as a whole:

∆xs_edu2010,1990
i ≡ ∆edu2010,1990

i −∆edu2010,1990
city

=
[
∆edu2010,2000

i +∆edu2000,1990
i

]
−

[
∆edu2010,2000

city +∆edu2000,1990
city

]
.

A positive excess change implies that the block became more educated, when compared

to the city as a whole, whereas a negative excess change means that the block became

less educated when compared to the city as a whole. To fix ideas, between 1990 and

2010, the city-wide shares of highly educated grew by 7.44% in New York, by 9.20% in

Boston, and by 9.05% in Philadelphia.32

In what follows, we focus on blocks that experienced substantial excess change (or

substantial change, for short). We define substantial change as growth twice above

that of the city average. Formally, a block experiences substantial positive change if

∆xs_edu2010,1990
i > ∆edu2010,1990

city , and substantial negative change if ∆xs_edu2010,1990
i <

−∆edu2010,1990
city . In our data, blocks that experienced substantial change had growth rates

in excess of about 15% in New York and about 18% in Boston and Philadelphia. We think

this captures the idea that those are areas that experienced a lot of ‘socio-demographic

upgrading’—one out of five or six residents without higher education in 1990 was re-

placed with a highly educated counterpart by 2010 (or left in case of negative change).

[Insert Table 1 about here.]
31That there is a lot of neighborhood change in general, happening either over long periods or shorter

cycles, has been abundantly documented elsewhere. See Rosenthal and Ross (2015) for a recent survey.
32The growth in the share of highly educated in New York is 3.35% between 1990 and 2000, 4.09%

between 2000 and 2010, and hence 7.44% between 1990 and 2010.
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Our key question of interest is whether those changes occurred slowly or rapidly. To

analyze it, we decompose the time profile of these changes as follows. We compute the

share θi of the 1990–2010 change that occurs over 1990–2000 and the share 1 − θi of that

change that occurs over 2000–2010:

θi ≡
∆net_edu2000,1990

i

∆net_edu2010,1990
i

. (Appendix B.1)

A rush is formally defined for block i when θi < 0.25 or θi > 0.75, i.e., more than three-

quarters of the change in the share of highly educated occurred over one of the two

decades. In the reverse case, we think about this as ‘gradual change’ where the share of

educated grew more than that of the city as a whole but not too unequally spread over

the two decades.

What do our data tell us about neighborhood change? Panel (a) of Table 1 sum-

marizes a number of descriptive statistics for rushes in the three metropolitan areas.33

Take New York first. We have 61,205 blocks with positive changes. Out of these, we

have 24,506 substantial positive changes (40.04% of the changes). How many of those

substantial changes occur via rushes, and how many occur gradually? Using our defi-

nition of rushes, we find 15,691 rushes (64.03% of the substantial positive changes). In

words, rushes seem pervasive and account for about three-fifths to two-thirds of sub-

stantial neighborhood change in New York over the 1990–2010 period. The results for

the two other cities—as well as when examining only more central blocks, defined as

being less than the MSA median distance from the CDB—are very similar, with rushes

accounting for around three-fifths of the substantial positive changes in socioeconomic

neighborhood composition.

Panel (b) of Table 1 summarizes simple equality-of-means tests for a number of vari-

ables usually associated with gentrification, distinguishing between blocks that experi-

enced a rush and those that experienced slower change. We see that blocks with rushes

had significantly older housing stocks in 1990, with correspondingly lower rents and

housing values. However, there is no clear pattern between the two types of blocks con-

cerning the change in that housing stock over the two decades, which suggests changes

were accompanied by a mix of rebuilding and renovation (Munneke and Womack, 2015).

33In Table 1, we exclude the bottom decile of the smallest blocks in the 1990 population distribution in
each city (i.e., blocks with less than 15 residents in New York, 10 residents in Boston, and 11 residents in
Philadelphia). Small blocks have too noisy percentage changes to be meaningful.
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Unsurprisingly, blocks that experienced rushes also had lower per capita income in 1990.

Which factors may explain why some blocks experience rushes while others experi-

ence slower change? Proposition 1 shows that a flatter opportunity function will lead to

faster growth, while Proposition 4 shows that the size of the rush is larger if opportu-

nities are less compressed. In our model, higher moving risk (a low ζi) or faster price

growth (larger ρ′i) leads to a flatter opportunity function, which should correlate with

faster growth. Table 2 summarizes the results from linear probability model that inves-

tigate the correlates of rushes. The dependent variable is a dummy taking value 1 if

the block experienced a rush and zero otherwise.34 The observations are all blocks that

experience significant positive change.

[Insert Table 2 about here.]

Table 2 shows our results for all three MSAs pooled (columns 1-3), New York (columns

4-6), Boston (columns 7-9), and Philadelphia (columns 10-12). First, as shown rushes are

more prevalent in gentrifying areas closer to the MSA CBD. This is in line with find-

ings by Rosenthal and Maloney (2022) who show that idiosyncratic asset risk and price

appreciation are higher closer to the central city. Yet, as shown this effect vanishes (or

gets substantially attenuated) once we control for the age and price of the housing stock.

This suggests that the risk-return relationship if driven by the age and initial price of

the housing stock. Remarkably, we see from the data that fast change—rushes—are

more prevalent in areas where per capita income was lower, the housing stock older,

and prices cheaper. In a nutshell, the data suggest that rapid change is more frequent in

more risky places. To our knowledge, this fact has not been noted until now.

To summarize, rushes are pervasive in the sense that substantial neighborhood change

occurs rapidly more often than not.35 Across three major US metropolitan areas, we find

that about 60% of substantial changes between 1990 and 2010 occurred to more than 75%

over one of the two decades only. Rank-dependent opportunities provided by older real

estate—as emphasized in our model—may explain that type of change.

34Results using a probit model are very similar.
35If rushes occur around the year 2000 in our data, we may even underestimate the number of rushes.

Assume, e.g., the 100% of the change occurs between 1995 and 2005, with 50% before 2000 and 50% after.
We classify this as slow change, though it is a rush. Ideally, we would require more frequent data, but
those are not available at a small geographic scale.
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Appendix B.2 Entrepreneurship: Finance and technology industries

We combine the model above and census data on the growth of the finance and technol-

ogy (tech) industries between 1980 and 2000 to investigate the size of rushes following

Proposition 4. These two industries represent important industries with similar levels

of skill but different relative ages. The finance industry is old and established, while

the technology industry is relatively new (and was especially so in 1980). These two

industries therefore provide an ideal comparison for growth.

The model states that initially wages in the technology industry are lower than those

in finance but that there are opportunities to accumulate entrepreneurship human cap-

ital. This suggests places with faster tech growth will also have high growth in self-

employed people. While there are opportunities in the technology industry, it is also

risky. There are fewer jobs in the technology industry than in finance, and this is magni-

fied in some smaller geographic areas. This risk can create a nonmonotonic opportunity

function—inducing a rush into the tech industry. Further, following Proposition 4, the

rush will be larger in cities with fewer initial tech jobs, where the risk of entering the

tech industry is larger.

We use data from the Integrated Public Use Microdata Series (IPUMS) of the US Cen-

sus and the County Business Patterns (CBP). These data include individual-level data on

occupation (NAICS), worker class (e.g., self-employed or private wage earner), wages,

and demographic information (e.g., age, sex, race, education). We report descriptive

evidence from the finance and technology industries between 1980 and 2000 in Table 3.

Columns (1) and (2) show that (mincerized) wages in 1980 are 2.6% lower in the tech-

nology industry than in finance, but by 2000, they are 2.7% higher in the technology

industry. Given this discrepancy in wages, we would predict that, for individuals to be

willing to enter the tech industry, it must provide entrepreneurship human capital. We

report evidence in support of this in columns (3) through (6).

The growth rate of self-employed individuals in MSAs is positively correlated with

the MSA’s growth rate in the technology industry and negatively correlated with its

growth rate in the finance industry. This correlation is robust to controlling for the total

growth rate (column 3) and including state- and industry-level controls (column 4). We

report placebo tests in columns (5) and (6), using the growth rate of private sector wage

earners and government employees. For both of these worker classes, their growth rate is

not positively correlated with the growth rate in the technology industry. This evidence
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is consistent with our model, where new industries provide entrepreneurship human

capital in lieu of the higher wages paid in more established industries.

As a result of these opportunities, the technology industry boomed between 1980 and

2000. Column (7) shows that the growth rate in the technology industry between 1980

and 2000 was substantially larger than in finance. Consistent with Proposition 4, we find

that technology growth was higher in cities with smaller initial amounts of technology

employment (column 8). Entering the industry in these cities is riskier because there

are fewer potential jobs in case of job displacement. This risk creates an initially flatter

opportunity function and therefore faster growth or larger rushes. For example, we find

the technology growth rate was higher in Provo, UT (low initial employment), than in

Ann Arbor, MI (high initial employment). This evidence is supported by the resulting

wage growth rates in the technology industry, relative to finance, and in small initial

computer industry MSAs, relative to large initial tech industry MSAs. Columns (9) and

(10) show that wages grew faster in technology than in finance and the wage grew even

faster in small initial tech MSAs, though the last result is not precisely estimated.

[Insert Table 3 about here.]

To summarize, rank-dependent opportunities may help explain rushes into and growth

differences between industries. We find evidence that job and wage growth were faster

in technology than in finance—and even faster in MSAs with relatively low tech in 1980,

which made the industry geographically riskier. We also find that growth in technology

jobs, and not finance jobs, is correlated with more entrepreneurship.
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Figure 1: The price of opportunities.
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Figure 2: Conditions for rushes to occur in equilibrium.

(a) No rush in equilibrum. (b) Rush in equilibrium.
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Figure 3: Effects of changes in the opportunity function.

(a) Proportional shift. (b) Skewed and compressed.
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Figure 4: Parcels of land in a city.

47



Figure 5: Population growth in Lexington and Louisville.

(a) Lexington. (b) Louisville.
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Notes: This figure uses data from the decennial census. The model predicts rapid growth or a rush in
Lexington and slow initial growth in Louisville, based on the differences in the heterogeneity of land in
both cities.
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Figure 6: Business Applications and Fertility Rates.

Notes: This figure uses data from the US Census. The model predicts rapid growth of entrepreneurs in
younger areas.

49



Figure 7: Potential Opportunity Function
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Table 1: Rushes and block-level characteristics, 1990–2010.

(1) (2) (3)
New York Boston Philadelphia

(a) Prevalence of rushes in CBSAs

# stable blocks in CBSA 122,021 71,330 63,487

# blocks with substantial positive change 24,506 10,381 8,232

# blocks with rushes 15,691 6,407 4,967

Share of rushes 64.03% 61.72% 60.34%

# stable blocks, less than median distance to CBD 60,939 35,672 31,717

# blocks with substantial positive change 12,944 5,241 4,093

# blocks with rushes 8,483 3,199 2,490

Share of rushes 65.54% 61.04% 60.84%

(b) Equality-of-means tests, conditional on substantial positive change

Median construction year of buildings in 1990 (rush = 1) 1952.60 1951.21 1952.47

Median construction year of buildings in 1990 (rush = 0) 1953.95 1952.25 1953.74

T -test 8.8254
a

3.9352
a

4.4043
a

∆ median construction year of buildings, 1990–2010 (rush = 1) 3.81 3.09 6.57

∆ median construction year of buildings, 1990–2010 (rush = 0) 4.07 3.00 7.14

T -test 1.9294
b -0.4540 2.1497

b

Median gross rent in 1990 (rush = 1) 719.61 620.25 522.88

Median gross rent in 1990 (rush = 0) 738.37 635.17 545.51

T -test 6.8767
a

4.1325
a

6.1751
a

Median housing value 1990 (rush = 1) 207,908.50 155,409.60 97,030.38

Median housing value 1990 (rush = 0) 215,745.00 162,033.10 105,912.30

T -test 7.3929
a

7.1727
a

8.6740
a

Median per-capita income 1990 (rush = 1) 20,028.37 15,855.49 14,314.29

Median per-capita income 1990 (rush = 0) 20,721.76 16,326.36 15,468.74

T -test 5.7024
a

5.2088
a

9.6987
a

Notes: See Appendix B.1 for details on the data sources, variables, and their construction. The bottom panel
of the table provides equality-of-means tests that compare blocks with rushes and without rushes, conditional
on substantial positive change. Variables pertaining to building years and changes are expressed in years.
Rent, housing values, and income variables are expressed in current USD. a p < 0.01; b p < 0.05; c p < 0.1.
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